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Interpretable ML, Stress, Al for Healthcare

In the last few years, several scientific studies have shown that occupational stress has a significant impact
on workers, particularly those in the healthcare sector. This stress is caused by an imbalance between work
conditions, the worker’s ability to perform their tasks, and the social support they receive from colleagues and
management professionals. Researchers have explored occupational stress as part of a broader study on af-
fective systems in healthcare, investigating the use of biomarkers and machine learning approaches to identify
early conditions and avoid Burnout Syndrome. In this paper, a set of machine learning (ML) algorithms was
evaluated using statistical data on biomarkers from the AffectiveRoad database to determine whether the use
of explanations can help identify stress more objectively. This research integrates explainability and machine
learning to aid in the identification of various levels of stress, which has not been previously evaluated for the
domain of occupational stress. The Random Forest is the best-performing model for this assignment, followed
by k-Nearest Neighbors and Neural Network. Later, explainers were applied to the Random Forest, highlight-
ing feature importance, partial dependencies between characteristics, and a summary of the impact of features

on outputs based on their values.

1 INTRODUCTION

Over the last few years, we have studied occupational
stress as part of a comprehensive study on affective
systems in healthcare to improve decision-making.
In seeking alternatives for identifying stress, studies
have been conducted on physiological parameters that
can assist in the non-invasive identification of occupa-
tional stress (Morales et al., 2022b), (Morales et al.,
2022c). In the field of affective systems, it is empha-
sized that recognizing emotions is a complicated task
that requires techniques capable of helping to identify
various aspects. These include the intensity levels of
emotions, the types of emotions, the factors that trig-
ger these emotions, and behavioral and social factors
that may affect the expression or suppression of emo-
tional issues (Picard, 2000).

Psychological professionals can identify occupa-
tional stress early through standardized responses to
questionnaires. A unique way to identify and diag-
nose stress conditions has been used for several years
with this technique. Despite the validity of these

methods, there is a concern about subjective bias as
they may generate distortions in the results (Greene
et al., 2016). With the advancement of sensor tech-
nology, several studies have been conducted to iden-
tify stress using physiological signals and machine
learning techniques (Morales et al., 2022b): heart
rate, brain activity, skin response, body temperature,
blood activity, respiratory response, and muscle ac-
tivity, i.e., biomarkers. There are potential parame-
ters to assist in identifying biomarkers; in fact, many
wrist-worn wearables have been tested in data col-
lection in recent years, and their results have been
promising (Morales et al., 2022a). The biomarker-
based approach, however, does not show much trust
because stress identification involves psychological,
physiological, and emotional aspects. Stress repre-
sents a coordinated activation of multiple biological
systems following the introduction of a stressful stim-
ulus (stressors) that represents a disruption of home-
ostasis or a perceived disruption (Potts et al., 2019).
Many studies have examined the association between
this point and ML algorithms in the scientific litera-



ture (Morales et al., 2022c). According to Inam et al.
(2021), the complexity and sophistication of systems
involving artificial intelligence (AI) have grown to the
point where humans are not always capable of under-
standing the reasoning behind the decisions made by
ML mechanisms. This fact can be attributed to large
datasets composed of a massive volume of informa-
tion used to train and test increasingly complex sys-
tems (Linardatos et al., 2021). Presently, the ability
to interpret and understand the mechanisms behind
Al is essential for the validation of ML systems in
healthcare area (Montavon et al., 2018). Addition-
ally, Guidotti et al. (2018) highlight the possibility
of ML components making incorrect decisions with-
out providing the opportunity to detect the learning
problem. Systems that apply Al for decision-making
can be classified into one of the following three cate-
gories:

* Opaque systems that do not offer any insight into
their algorithmic mechanisms, concealing their
internal knowledge from the user (Doran et al.,
2017; Guidotti et al., 2018);

* Interpretable systems, whose algorithmic mech-
anisms can be analyzed by their users (Doran
et al., 2017);

* Understandable systems that emit symbols al-
lowing user-guided explanations on how a conclu-
sion is reached (Doran et al., 2017);

Explainable Artificial Intelligence (XAI) refers to
methods and techniques that produce understand-
able and accurate models, highlighting why a model
reaches a specific decision. Therefore, solutions ob-
tained by artificially intelligent systems can be com-
prehended by humans, providing more transparency
and interpretability to instill trust in the results pro-
duced by Al-based solutions (Inam et al., 2021). It
can be uncomfortable to rely on a decision made with-
out any explanation (Doran et al., 2017; Miller, 2019).
The fact that humans are not always capable of under-
standing the results of black-box algorithms increases
the necessity for interpretability, transparency, and ex-
plainability of outputs generated by artificial intelli-
gence systems. These factors are crucial for humans
to comprehend and trust Al-based systems (Inam
et al.,, 2021). The ability of XAI to identify stress
biomarkers from a dataset of stress biomarkers gath-
ered from a study group would be a valuable study in
this field. In this way, biomarker-based systems can
be made more reliable and the dataset can be opti-
mized, thereby allowing for the identification of indi-
vidual stressors to be enhanced.

In this paper we present an evaluation of a set
of machine learning algorithms trained with statisti-

cal data of biomarkers available in the AffectiveRoad
database (Lopez-Martinez et al., 2019; Vos et al.,
2022) for the detection of different levels of stress.
In this study, we investigate whether explanations are
useful for identifying stress objectively. Biomarkers
used from the database are similar to those used to
identify occupational stress in healthworkers (Hos-
seini et al., 2022): heart rate (HR), electrodermal ac-
tivity (EDA), and skin temperature (TEMP). The ma-
chine learning algorithms used were Support Vector
Machine (SVM), k-Nearest Neighbors (kNN), Neu-
ral Network (NN), Random Forest (RF), and Logistic
Regression (LR). After identifying the algorithm with
the best performance, we presented explanations that
highlighted the characteristics of the dataset that have
the most influence on identifying stress. Explainers
employed for identification were Partial Dependency
Plot, Feature Importance, and Summary Plot. Lastly,
model optimization was conducted considering only
the most important characteristics identified in the
previous stages. Finally, the algorithms and explain-
ers were tested and evaluated again for the optimized
dataset. The relevance of this research lies in com-
bining explainability and machine learning to assist
in the identification of different levels of stress. Sim-
ilar works were identified in the scientific literature
(Chalabianloo et al., 2022; Tseng et al., 2020); how-
ever, no evidence was found of studies that evaluate
and explain machine learning methods specifically for
the domain of occupational stress. Thus, this present
study contributes to advancing knowledge in both the
field of computer engineering (artificial intelligence)
and healthcare.

2 MATERIAL AND METHODS

From a preliminary study, articles from the scien-
tific literature were investigated to support the se-
lection criteria among publicly available databases
for occupational stress detection. Consideration was
given to the article by (Hosseini et al., 2022), which
utilizes the AffectiveRoad database (Lopez-Martinez
et al., 2019; Vos et al., 2022), and also provides pre-
processed data with 48 columns of statistical data on
the collected biomarkers.

For the selection of explainers, a study was con-
ducted in the scientific literature. Research such as
that by (Guidotti et al., 2018) and (Montavon et al.,
2018) present evidence for the use of explainers de-
pending on the model’s input and output. In the case
of this application for stress detection, good choices
to clearly highlight the reasons behind the model’s
decisions are explainers such as Summary Plot (SP),



Partial Dependency Plot (PDP), and Feature Impor-
tance (FI). In addition, Shapley Additive Explana-
tors (Antwarg et al., 2021) were used to obtain such
explainers. Finally, the 10 most important character-
istics of the three models with the best performance
during the model evaluation stage were considered.
Therefore, all five algorithms were retrained three
times:

* First, with the 10 most important features for the
first best result;

» Second, with the 10 most important features for
the second best result;

e Third, with the 10 most important features for the
third best result.

Therefore, three stages were developed: a prelim-
inary assessment of machine learning algorithms, an
explanation of the Random Forest algorithm, which
showed better performance during the evaluation, and
finally, training the algorithms with the most impor-
tant characteristics identified in the study. The dataset
has 49 columns.

3 RESULTS

A performance comparison of black-box machine
learning algorithms was conducted. A Python pro-
gram was developed to obtain statistics related to the
models’ performance, using classes from the sklearn
library to evaluate the selected algorithms in this
study. Furthermore, parameters indicating the per-
formance of each algorithm were obtained. These
parameters were Accuracy, AUC (area under ROC
curve), Recall, and F1 Score.

Figure 1 displays a diagram indicating the inputs
and potential outputs of the used algorithms.

Heart rate data
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Figure 1: Diagram of inputs and outputs of the algorithms

3.1 Evaluation of the Selected Machine
Learning Models

Among the biomarker data, totaling 48 input char-
acteristics, it includes the average of the last 11
measurement cycles, maximum value, minimum
value, and standard deviation of the three considered
biomarkers. Additionally, other data such as ampli-
tude, duration, kurtosis, standard deviation, and dis-
tortion of electrodermal activity, as well as the num-
ber of peaks and heartbeats per second of heart rate,
are included. On the other hand, the models’ output
is summarized by the stress level. There were three
levels of stress to classify and label: O (no stress), 1
(low stress), and 2 (a lot of stress).

3.1.1 Training of models

The parameters used for training the algorithms were
also developed using the resources of the sklearn li-
brary. In the case of the Random Forest, some pa-
rameters were modified to follow the same settings
chosen by (Hosseini et al., 2022). In other cases, the
parameters were varied and chosen based on the al-
gorithms’ performance with parameter settings. The
following are the training parameters applied to each
model:

¢ k-Nearest Neighbors was trained with k being 5,
using Euclidean metric, and uniform weight.

* Logistic Regression was trained with L2 regular-
ization and C equal to 1.

¢ Neural Network was trained with 100 neurons in
hidden layers, ReLu activation, and Adam opti-
mization.

¢ Random Forest was trained with 100 trees and a
minimum number of branches set to 5.

 Support Vector Machine was trained with a cost
of 1, regression loss of 0.1, linear kernel, and nu-
merical tolerance of 0.001.

It’s worth noting that Support Vector Machine and
Logistic Regression algorithms are more commonly
used as binary classifiers, in applications with only
two possible outputs. For this reason, approaches
were employed to enable the models trained with
these algorithms to consider three classes. For the
Support Vector Machine algorithm, a One Vs. One
approach was used, where 3 classifier models were
trained, each using data from two distinct classes.
Additionally, the Logistic Regression model used the
One Vs. Rest approach, so that three classifiers were
trained, with each considering one of the three possi-
ble outputs as positive and the other two as negative.



3.1.2 Results of Algorithm Evaluation

The algorithms were then tested, where 70% of the
data was selected for training in all cases, and the re-
maining 30% was used for testing. The division of
data for training and testing was randomly performed
using the frain_test_split function from the sklearn li-
brary. The evaluation was conducted by comparing
the expected outputs with the outputs obtained by
each model.

Table 1 shows the results obtained after evaluating
the algorithms with the test data.

Model | AUC | Accuracy F1 Recall
(D) RF | 0.994 0.955 0.943 | 0.933
2) kNN | 0.964 0.878 0.854 | 0.854
3) NN | 0.900 0.771 0.702 | 0.691
@) LR | 0.747 0.610 0.453 | 0.496
5) SVM | 0.735 0.617 0.451 | 0.500

Table 1: Results of model evaluation.

For all the parameters used, a value closer to 1 in-
dicates better performance. For this reason, the mod-
els were ranked in order of AUC, as observed in the
assigned ranking. This parameter was chosen because
it represents the relationship between true positives
and false positives classified by the models. Note that
the algorithms Logistic Regression and Support Vec-
tor Machine would change their ranking if the deci-
sive parameter were accuracy or recall.

Based on the AUC value, the Random Forest al-
gorithm presents excellent performance in classifying
stress levels using biomarkers. Also showing good
performance are the k-Nearest Neighbors and Neu-
ral Network algorithm. On the other hand, the Sup-
port Vector Machine and Logistic Regression algo-
rithms exhibit performance closer to a random clas-
sifier, making them less suitable for real-world appli-
cations.

3.2 Explanation of the Random Forest

As the Random Forest showed the best result, explain-
ers were applied to the trained model to elucidate how
the Random Forest works. The explainers were ob-
tained using the shap library.

3.2.1 The shap library

The shap library employs measures known as shap
values, introduced by (Lundberg and Lee, 2017).
These measures constitute a unified representation of
feature importance, based on Shapley Values, which

utilize game theory equations to derive values. While
Shapley Values quantify the contribution each player
brings to a game, shap values quantify the contri-
bution each feature brings to the model’s prediction,
making shap the most advanced explainability library
to date (Mazzanti, 2020).

3.2.2 Partial Dependence Plot

Figure 2 depicts a partial dependence plot of the Ran-
dom Forest for the feature TEMPR_Max, considering
the feature HRR_Min when the considered output is 2
(high stress).

The horizontal axis of the graph represents the
proportion of values of the feature TEMPR _Mazx, the
maximum value of skin temperature. The closer to
0.0, the closer it is to the smallest measured value for
this feature, and the closer to 1.0, the closer it is to the
largest measured value for this feature.

Similarly, the colors of the markers indicate the
proportion of the value of HRR_Min, the minimum
value of heart rate. The more blue, the closer it is to
the minimum value measured for this feature, and the
closer to red, the closer it is to the maximum value
measured for this feature. Thus, the vertical axis indi-
cates the impact of the relationship between the fea-
tures TEMPR_Max and HRR_Min on the model.

010 - 0.8
- 0.7

- 0.6

o
@
=]

SHAP value for
TEMPR_Max
&
(=]
i
o
%, ]
HRR_Min

2
d

—0.10

=]
]

[=d
5]

—0.15

00 02 04 06 08 10
TEMPR_Max

Figure 2: Partial Dependence Plot of the model.

To increase understanding, four regions of the plot
deserving attention have been highlighted. These re-
gions are:

* Region 1 indicates that when the minimum heart
rate has a high value and the maximum skin tem-
perature has a low value, the skin temperature
feature positively contributes to detecting a stress
level of 2 (high stress).

* Region 2 suggests that as the minimum heart rate
decreases and the maximum skin temperature in-
creases, the impact of maximum skin temperature
decreases, approaching 0.



* Region 3 signifies that high values of minimum
heart rate and maximum skin temperature have a
small negative impact, contributing to diagnosing
little or no stress.

* Region 4 suggests that high values of maximum
skin temperature, combined with low values of
minimum heart rate, contribute to an output in-
dicative of little or no stress.

It is noteworthy that the partial dependence plot is
a type of local explanation, as it considers only one
target output.

3.2.3 Summary Plot

The summary plot is named as such because it aims
to “summarize” the impact of features associated with
their values. Red points indicate that the feature value
is higher than most other values assigned to that fea-
ture. Similarly, blue points correspond to values lower
than most other values assigned to a particular feature.
Each row corresponds to a feature, indicated on the
left, and each point corresponds to a data instance.

The horizontal axis indicates the impact, positive
or negative, that the feature has on the considered out-
put value. In the middle of the plot, there’s a vertical
line indicating an impact of 0, where features do not
influence the model’s output. Points on the left have
a negative impact, while points towards the right have
a positive impact on the output considered. Figure 3
presents the summary plot of the Random Forest, con-
sidering output 2 (high stress).

The plot highlights that the top six features are
crucial for the model’s output, as they possess more
than double the importance of the others. Addi-
tionally, it’s noticeable that the feature TEMP_Mean,
i.e., average skin temperature, has the most signif-
icant impact on the result. Following closely are
TEMP_Max, which is the maximum skin temperature,
and HRR_Mean, representing the mean heart rate.

It can be noted that all the top six most important
features exhibit the same behavior: with low values,
the features contribute to the high stress output, while
with high values, there is a tendency towards diag-
noses of little or no stress.

It is also notable that concerning less important
features, the points are closer to the no-impact line,
and the relationship between the feature values and
their impact on the model’s output is unclear. More-
over, the summary plot is a local explanation, consid-
ering only one of the possible outputs. Next, the re-
sults of training the five models using only the top ten
most important features from the three models with
the best performance are presented.
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Figure 3: Summary Plot of the Random Forest.

3.3 Training Algorithms with Most
Important Features

As the final stage of this work’s development, the
training of algorithms is conducted using the top 10
most important features for the three highest-rated
outcomes. Training with fewer features can help im-
prove model training time and evaluate which fea-
tures are truly necessary for occupational stress detec-
tion, enabling the simplification of data preprocess-
ing. This investigation aims to verify if is it possible
to achieve similar results with fewer features in each
of the studied algorithms.

For training, it was necessary to first find the 10
most important features from the 3 best-performing
algorithms tested in the study: Random Forest, k-
Nearest Neighbors, and Neural Network. Figure 3
displays the feature importance assessment for the
Random Forest. The top 10 most relevant features for
k-Nearest Neighbors and Neural network were also
considered for training all five models. With this in-
formation, it was possible to perform the training of
the five algorithms again, using only the top ten fea-
tures from each Feature Importance analysis.

All five models were retrained, and the same per-
formance parameters were obtained. Table 2 shows
the AUC obtained from all the models trained with
sets of features.

The first column of Table 2 displays the AUC



Model | All | 10 RF | 10 kNN | 10 NN

(1) RF | 0.994 | 0.992 0.986 0.991
2) kNN | 0.964 | 0.990 0.960 0.988
3) NN | 0.900 | 0.870 0.841 0.875
“ LR | 0.747 | 0.736 0.729 0.739
(5) SVM | 0.735 | 0.735 0.720 0.732

Table 2: AUC results from training with all features, and
the top 10 impactful features for Random Forest, k-Nearest
Neighbors and Neural Network.

found for the models trained with all the features in
the dataset.

The second column, 10 RF, displays the AUC
found for the models trained only with the 10 most
important features for Random Forest. When com-
paring the AUC value of models when trained with
the top 10 most important features of RF model with
the AUC of models trained with all features, it is ob-
served that there was no drastic reduction in the per-
formance of any of the models. On the other hand,
it is worth highlighting the significant improvement
in the kKNN model’s performance, which considerably
approaches the RF model, ranked first. Additionally,
the classification of the algorithms remains the same.

The third column, 10 kNN, displays the AUC
found for the models trained only with the 10 most
important features for k-Nearest Neighbors. When
comparing the results from training with the top
10 most important features of kNN model with the
results from training with all features, all models
showed a decrease in performance, but this decrease
was scarcely noticeable in practice.

Finally, the last column, 10 NN, displays the AUC
found for the models trained only with the 10 most
important features for Neural Network. These re-
sults show a slight deterioration in the performance
of all results compared to the performance of models
trained with all features, except for the KNN model.
Similar to what was observed in the results from train-
ing with the most impactful features for Random For-
est, the k-Nearest Neighbors model showed a signif-
icant improvement in performance, also approaching
the Random Forest in the top position. These results
also do not alter the classification of the algorithms.

4 DISCUSSION

In this section, we present the main outcomes of this
study and compare and discuss them in relation to
findings from other works identified in the literature.

The primary outcome of the machine learning
algorithm evaluation stage was the superior perfor-
mance observed in the Random Forest model. In re-

lated studies (Dave et al., 2020), the XGBoost, a tree
ensemble model similar to Random Forest introduced
by (Chen and Guestrin, 2016), was included in evalu-
ations, unlike in this research.

Moreover, the research by (Tseng et al., 2020)
provided an assessment of machine learning algo-
rithms, concluding that the combination of XGBoost
with Random Forest into a single algorithm outper-
formed all other evaluated models, which included
SVM, LR, and simple decision trees. Additionally,
in (Tseng et al., 2020), XGBoost and Random For-
est ranked second and third, respectively, indicating
the strong performance of tree ensemble algorithms.
This research did not combine algorithms and did not
test XGBoost.

Additionally, in (Chalabianloo et al., 2022), four
classifiers were identified as the most promising for
training. These classifiers were SVM, Random For-
est, Extremely Randomized Tree, and Light Gradient
Boosting Machine, two of which are similar to those
used in this research. The latter two algorithms are
also tree-based ensemble methods, added to the study
after the authors observed promising results from the
Random Forest model. In this case, while Random
Forest was not chosen, it outperformed the others,
demonstrating its significance.

Furthermore, the study by (Morales et al., 2022c)
provided a survey of machine learning model types,
considering the analyzed features for stress detection.
Despite SVM being a predominant model found in
many of the studies surveyed, it did not perform well
in this research with the utilized dataset and parame-
ters.

Conversely, in the work by (Bahani et al., 2021),
a comparison among machine learning models was
conducted, and the Random Forest exhibited one of
the worst performances among the evaluated algo-
rithms, which included SVM, kNN, NN, and Naive
Bayes. These results contrast with the outcomes of
the present study.

4.1 Comparing the Biomarker Impacts

This phase of the development resulted in an expla-
nation of the Random Forest, elucidating the signifi-
cance of model characteristics, along with graphs as-
sociating their values and contributions to possible
outputs. Additionally, it ca be noted that the impor-
tance of characteristics varies depending on the algo-
rithm to be explained.

Among all the analyzed works, the only one ad-
dressing stress explainability, allowing for compar-
isons with the outcomes achieved in this study, is the
work by (Chalabianloo et al., 2022). On the other



hand, the work by (Hosseini et al., 2022) does not
provide explanations for the obtained outputs. Works
such as (Madanu et al., 2022), (Pawar et al., 2020),
and (Dave et al., 2020) focus on different areas of
medicine, offering no possibility of comparing expla-
nations and biomarker impacts for occupational stress
detection.

The work by (Chalabianloo et al., 2022) uti-
lized data collected in a laboratory environment us-
ing seven different wearable devices. These data
were also categorized among low, medium, and high
stress through context analysis during their collec-
tion. Therefore, the quantity and types of data are
different from those used in this study. Feature se-
lection was performed using recursive feature elimi-
nation with cross-validation, resulting in 12 features
related to heart rate and entropy. The most important
features for the trained algorithms were the interval
between heartbeats and approximate entropy. Sub-
sequently, the authors added electrodermal activity
measures, resulting in improved model performance.
However, there is no presentation of the importance
of features associated with electrodermal activity, and
models trained with this data are not explained.

The work by (Chalabianloo et al., 2022) also in-
dicates that the importance of features varies accord-
ing to the explained model, which is supported by the
feature importance analysis conducted in this study.
Overall, it reinforces the significance of features re-
lated to heart rate and electrodermal activity for stress
detection, emphasizing that the use of more biomark-
ers beyond heart rate contributes to making the model
more reliable.

4.2 Feature Reduction in Model
Training

Training with fewer features resulted in a slight re-
duction in the performance of the tested algorithms,
except for the k-Nearest Neighbors. When trained
with the 10 most important features from the Random
Forest and Neural Network algorithms, kNN showed
a significant improvement in performance, showing
efficiency in cases with fewer features, as predicted
in the work by (Singh et al., 2016). Despite the per-
formance improvement, kNN did not outperform the
Random Forest in any case, which remained in the
first position in all evaluations conducted. So far, no
research has been found in the survey that utilizes fea-
ture importance to reduce the dataset size and opti-
mize algorithm training.

Regarding training time, there was no noticeable
difference. However, it is noted that when training
algorithms with real-world data, much larger in size,

the difference may be noticeable. Training time tends
to be longer for LR and shorter for kNN, RF, and
SVM, or indifferent for NN according to character-
istics mentioned in the work by (Singh et al., 2016).

S CONCLUSION

In this paper, we evaluate machine learning models
trained with statistical biomarker data extracted from
the AffectiveRoad database to detect different stress
levels. Our evaluation indicated Random Forest as
the best-performing model for this task, followed by
k-Nearest Neighbors and Neural Network. Later, ex-
plainers were applied to the Random Forest, high-
lighting partial dependencies between characteristics,
and a summary of the impact of features on outputs
based on their values.

The feature importance assessment suggests that
data related to skin temperature and heart rate hold
greater significance for the model. Moreover, the
Random Forest summary graph indicates that high
values of skin temperature and heart rate suggest low
or no stress. Conversely, high electrodermal activity
indicates stress, although it holds less importance for
the model. Furthermore, the partial dependency graph
illustrates that even with high skin temperature, the
heart rate value can increase or decrease its impact on
the model. Noteworthy regions of the partial depen-
dency graph are highlighted to demonstrate how one
characteristic’s value influences the impact of another
characteristic.

Finally, this study presents some limitations we in-
tend to address in future work. Firstly, machine learn-
ing algorithm training was conducted using only sta-
tistical features derived from three biomarkers, while
there are nine other biomarkers used in stress de-
tection in other studies. Secondly, some algorithms
commonly used for diagnostics in the healthcare field
were not part of the evaluation, and no combination
of algorithms was used for final assessment. Addi-
tionally, no emotional factor characteristics were used
for model training, making it difficult to distinguish
between eustress and distress. Furthermore, there
was no translation of explanations to make them eas-
ily understandable for healthcare professionals, and
there was no integration with a recommendation sys-
tem to address detected stress. Local explanations,
valid for only one data instance, can be applied and
translated into a sentence in natural language to facil-
itate quicker and easier understanding of these expla-
nations, directly assisting healthcare workers to better
understand stress identification from biomarker read-
ings.
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