
Runtime Microservice Self-distribution for
Fine-grain Resource Allocation

Renato S. Dias
Institute of Informatics

Federal University of Goiás
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Abstract—The development of systems using microservices as
building blocks have gained major popularity in the industry in
the past few years. Widely used services, such as Netflix and Uber,
have been built entirely as microservice architectures. Due to the
modularity and self-containedness of microservices, coupled with
the use of elastic deployment infrastructures, a number of tools to
assist the scalability of such systems have been created. However,
these tools are limited to act at a fixed granularity, being able
to replicate, relocate and provide access to extra resources only
at the level of the entire microservice, even when only one of
its parts actually demands more resources. In this paper, we
propose the use of the concepts of adaptive component models,
emergent microservices, and self-distributing systems to explicitly
define the internal micro-architecture of microservices. In this
approach, a microservice is built as a dynamic configuration of
components, which can be seamlessly adapted and distributed
on top of an elastic cloud infrastructure by the underlying
platform. We evaluate the benefits of the approach by exploring
different scenarios that entail the use of dynamic adaptation
and self-distribution to perform vertical and horizontal scaling
of microservices at a fine granularity. We analyze the involved
tradeoffs and discuss how the approach can be further explored.

Index Terms—Microservices, Self-distribution

I. INTRODUCTION

Microservice-based systems have gained major popularity
in the industry during the past few years. This increasing
popularity is due, among other factors, to the high modularity
and self-containedness of microservices, which make systems
decoupled, highly reusable and relatively easy to adapt to
accommodate fluctuations in the incoming workload.

The approach of decoupling services as functions that
interact via programming interfaces has been used for some
time now. Methods to take advantage of such separation in
service-oriented architectures (SOAs) are also not new. In the
context of cloud environments, we apply this decoupling to
the design and implementation of microservices, maintaining
the goals of rapid deployment, interchangeability, adaptability
and scalability.

This paper proposes a novel approach for fine-grain adap-
tation of microservice architectures. The approach is based on
the concepts of emergent microservices and self-distributing
systems. It enables seamless and autonomic adaptation of
microservices by changing their internal composition (such

as by replacing and distributing components) at runtime to
improve performance and resource usage.

We demonstrate the approach by performing vertical and
horizontal scaling of the system at runtime at the service
level, showing performance improvements that significantly
outweigh the costs of the adaptation mechanisms.

The paper is structured as follows. Section II discusses
related work, with a focus on adaptable microservice architec-
tures, while Section III describes the proposed approach, the
architecture that realizes it, and the kinds of adaptation that it
supports. Section IV presents an evaluation of the performance
improvements and adaptation costs in different representative
scenarios. Finally, Section V concludes the paper with a
discussion of the advantages and limitations of the approach,
as well as future work.

II. RELATED WORK

Microservices can be considered the next step from service-
oriented architectures (SOAs), focusing on the small gran-
ularity and independence of services [3]. Coupled with the
elasticity of cloud environments, they now represent a widely
used approach to scale systems. Rossi et al. [11] explore
such elasticity with hierarchical control policies to manage
the adaptation of microservices, showing the advantages over
existing tools such as the Kubernetes autoscaler.1 Other related
research [2] explores ways to increase system performance by
choosing which microservice to scale in the environment.

Microservices have also been explored as self-reconfiguring
systems in the cloud [5]. These systems employ techniques
for the automatic deployment of optimized microservices.
However, the approach treats microservices as monolithic
building blocks. Instead, we focus on the distribution of
microservices at a finer-grain level of distribution, using a
dynamic component model to implement microservices. We
show the possibilities of using this level of granularity to
manage the resources utilized by the system.

The use of the “function-as-a-service” (FaaS) model to
exploit microservices at a finer granularity is explored in [1].
However, similar to the general paradigm of serverless com-
puting [7], it is limited to single function invocations and

1Kubernetes is an open-source system for automating deployment, scaling
and management of containerized applications (https://kubernetes.io/)



focuses on adapting the infrastructure rather than the internal
implementation of functions. Instead, our approach achieves a
similar effect by acting at the service level, providing a way for
the system to self-distribute and adapt a microservice’s internal
functions under the control of the application developer instead
of relying solely on the infrastructure provider.

III. APPROACH

A. Background and overview

Our approach traces its origins to the concepts of emergent
microservices (EM) [4] and self-distributing systems [10]. EM
enables microservices to dynamically self-adapt in the face of
changes in the workload, aiming at performance improvement
and resource efficiency. The concept is based on the autonomic
adaptation loop of emergent software systems (ESS) [9] and
on the design and implementation of microservices using a
dynamic component model that enables safe hot-swapping of
components at runtime [8], such as provided by the Dana
programming language.2

Self-distributing systems, in turn, refer to the ability to
transform a local system into a distributed one by seamlessly
distributing its components at runtime. The concept relies
on transparent RPC (Remote Procedure Call) to enable the
relocation of local components to remote hosts.

We employ these concepts in the context of an elastic
cloud infrastructure in order to facilitate the required dynamic
allocation of resources. To take advantage of the elastic
environment, EMs are hosted within containers, which in turn
are grouped in pods to facilitate their management. A container
orchestrator (such as Kubernetes) is then used to enable the
dynamic creation of pods to host new instances of an EM (or
indeed of any its parts in the case of self-distribution).

The overall result is a self-adaptive micro-architecture
model for microservices, capable of seamless reconfiguration
and distribution of a microservice’s components at runtime. It
enables taking full advantage of vertical and horizontal scaling
and distribution in elastic infrastructures, including component
relocation and replication, which in turn provides a means for
dynamic resource allocation.

Being able to break a microservice into smaller components
for replication and relocation enables a fine-grain approach to
handle situations in which the system finds itself competing
for resources, such as CPU and memory, without the need
to replicate or relocate the microservice as a whole. We
can identify which part of the microservice is consuming
most resources and apply different solutions to solve resource
competition. For instance, we can relocate a resource-intensive
component, giving it its own pod and resources, so that it
does not have to compete with the other components for the
same resources. Alternatively, we can relocate a rarely used
component, so that the remaining components can perform
better with more resources available at their current pod.

2https://projectdana.com

B. System architecture

The architecture to support the self-distribution of microser-
vices can be described in terms of its three main modules,
which are located in different pods in the system, as shown
in Figure 1: Distributor, RemoteDist, and ServiceCTL. Their
respective roles in realizing the approach are described next.
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Fig. 1. The three types of pod in the supporting architecture of self-
distributing microservices.

As shown in Figure 1, the system has a layered architecture
composed of three modules located in the pods that run the
microservice and its (distributed) components. The Assembly
and Perception modules are common to all those pods and
perform the two core functions of emergent software systems
that are relevant to the approach, namely dynamic composi-
tion and monitoring [9]. Assembly is responsible for loading
components from the file system into memory and connecting
them to form a functioning system. It is also in charge
of the runtime adaptation of components, by enumerating
all valid compositions, thus making it possible to explore a
variety of components to adapt the system at the service level.
The Perception module in turn is responsible for collecting
information from the running system. It is used to monitor the
performance of the microservice while in each of its possible
compositions and according to a predefined set of metrics
and events, in order to establish the best composition for the
microservice under different environment conditions.

The Distributor module, which is located in the original
pod running the microservice, is in charge of directing the
adaptation and self-distribution of the microservice’s compo-
nents, being also the starting point of the system. It calls
the Perception module to monitor each of the compositions
that the Assembly module was able to form and establishes
the composition that is more appropriate (i.e., has the best
performance) at each given point in time. It also connects
to the ServiceCTL module to direct the relocation or replica-
tion of any component of the microservice when necessary.
ServiceCTL in turn interacts with the container orchestrator
(Kubernetes) in order to create a new pod to actually host the
relocated/replicated component. Note that ServiceCTL runs on
a separate pod as it may serve different microservices.



The Distributor is also responsible for establishing the
connection between the different parts of a microservice that
were distributed across the environment. Once it initiates the
relocation (or replication) of a component, it replaces it (in its
original pod) with a proxy that uses RPC to communicate with
the new (remote) instance of the component. Thus, clients of
the relocated component can continue interacting with it in a
transparent way.

In order to complete the process of component relocation,
the RemoteDist module, located in the destination pod, creates
a local proxy and connects it to the corresponding proxy in the
original pod. It then creates and activates the new instance of
the relocated component. The two proxies then transparently
forward the requests from the original pod to the component in
its new location. Note that RemoteDist also uses the Assembly
and Perception modules to adapt and monitor the relocated
microservice components.

C. Self-distribution

The main motivation for self-distributing systems is to
exploit the ability to relocate and replicate a system’s compo-
nents. As we adopt a fine-grain programming model for mi-
croservices, where each internal function of the microservice is
presented as a separate component, we can use self-distribution
to rearrange these components into distributed compositions to
better utilize the environment provided by the cloud.

Relocation refers to the transfer of a component and all
its dependencies to a remote host. It relies on the ability to
seamlessly hot-swap components, as provided by the Dana
programming language. Dana uses transparent proxies and,
when an object is instantiated, it creates a proxy version of the
object at runtime, which has an internal reference to the actual
object. The proxy can then be used as a remote reference and
can be passed to other objects. To relocate a component of a
microservice to a remote host, we select the interface of the
component and replace it with a proxy that forwards function
calls to the component in its new (remote) location.

In this paper, we use relocation of components to perform
resource management. Relocating an intensively used compo-
nent provides a simple means to isolate resource usage within
a microservice and to use the elastic environment of the cloud
to give exclusive access to a pod’s resources to the relocated
component. We may also explore the relocation of microser-
vice components that are not being frequently used in order to
free resources (e.g., memory) for the other components. This
allows busy components to have more resources without the
need to interrupt them for their own relocation.

Another use of self-distribution is for the replication of
components. This enables horizontal scaling at an intra-service
level, where we replicate copies of the desired component to
different pods. This process is carried out by the Distributor
module with the help of ServiceCTL. The latter uses Ku-
bernetes to create the desired number of replicas. Once the
replicas are up and running, the addresses of their pods are
given to Distributor so that it can connect to them.

D. Local adaptation

Resource management can also be exploited in a local
composition without necessarily distributing the components.
Using the concept of emergent microservices, we can explore
different configurations of the system by changing which com-
ponents are currently being used. A microservice may have
different components that can act as handles for resource man-
agement, such as caches. The Assembly and Perception mod-
ules use these components to establish different microservice
compositions with different resource usage profiles. Vertical
scaling at the service level may then be realized by changing
from a composition that uses a lightweight component to a
different one that uses a component with more resources. At
system start, all the functional components of the microservice
have an attached non-functional component with this purpose.
Such a “resource component” can then be replaced at runtime,
granting the corresponding microservice component more (or
less) resources to perform its task.

IV. EVALUATION

In this section, we present an evaluation of the proposed
approach for microservice adaptation, aiming to show its
impact on application performance in different scenarios. First,
we characterize the different compositions which the system
can be adapted to, showing that some compositions may result
in better performance, thus justifying adaptation from one
composition to another. We also explore the cost of adaptation,
showing the impact on the overall system performance. Our
goal is to discuss and provide first answers to the following
questions:

• Is our approach able to make adaptations at runtime that
have a positive impact on the system, and if so, under
which circumstances?

• What are the limitations of the approach?
All experiments were conducted on the Google Cloud. We

created a cluster located in the US-Central region, with 3 nodes
managed by the Google Kubernetes Engine (GKE). Each node
was running the GKE standard Ubuntu image, with 2 vCPUs,
4GB of memory and 100GB of storage.

A. Case Study

In order to explore our approach in scenarios with real mi-
croservices, we take advantage of the InterSCity platform [6].
With its microservice architecture, the platform’s goal is
to provide an open-source environment that has all major
building blocks for the development of smart city applications
and services. Its microservices facilitate interaction with, and
control of, the devices (sensors and actuators) that make
up the cyberinfrastructure of a city, providing high level
APIs to application and service developers. The InterSCity
platform has six microservices with distinct functionalities: the
Resource Adaptor microservice is responsible for interacting
with sensors and providing their input to the other microser-
vices; Resource Catalog and Resource Discovery enable the
description and discovery of specific devices; Data Collector
is responsible for providing applications with access to data



collected from city devices; Actuator Controller, as its name
suggests, facilitates control of actuators; and Resource Viewer
is in charge of the visual representation of city resources.

As a case study, we focus on the Data Collector (DC)
microservice, as it provides a suitable example to explore self-
distribution and fine-grain resource allocation in the context of
microservices. We use DC to demonstrate the approach and
evaluate the performance improvements that it enables as well
as the associated costs.

For this purpose, we re-implemented DC using the dynamic
component model of the Dana programming language. This
new version has the same features of the original DC, which
are provided in terms of four main functionalities:

• Historical Data (HD) – provides access to all historical
data stored in the database;

• Historical Resource Data (HRD) – provides access to
historical data of a specific resource;

• Most Recent Data (MR) – provides access to the latest
data collected from all the existing resources; and

• Most Recent Resource Data (MRR) – provides access to
the latest data collected from a specific resource.

Each of these functionalities is realized as a separate com-
ponent, which can be relocated, replicated and scaled, thus
enabling several different composition variants of the system.

In addition to functional components, a microservice com-
position may also employ components that implement non-
functional properties. For DC, we define non-functional com-
ponents that implement two different caching strategies,
CacheLRUbasic and CacheLRUextended, which differ in terms
of the amount of memory provided to the component, thus
enabling tuning of resource allocation at the service level.
The composition of a microservice can thus be adapted in
a straightforward way by adding, replacing or removing these
components at runtime as the environment of the microservice
(e.g., workload and resource availability) changes.

We explore three types of microservice composition in the
evaluation, as shown in Figure 2.

The Local composition is the one deployed when the system
starts. It consists in all the components of the microservice
residing in the same pod, thus sharing the same resources.
Each of the four microservice components has an attached
cache component, which can cache a certain amount of request
responses to avoid the cost of remote database queries.

The second composition, called Extended, differs from the
first one by changing the cache component attached to each
functional component of the microservice. The new cache
provides more memory, thus being able to store a larger
amount of request responses in memory, boosting system
performance by further avoiding remote calls to the database.

Finally, the Distributed composition results from the re-
location of one of the microservice components to another
pod. This allows us to experiment with two different cases:
(a) relocation of a heavily used component, giving it its
own exclusive resources and relieving the system during
heavy workload periods; and (b) relocation of the least used
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Fig. 2. Three different compositions of the Data Collector microservice

microservice component, moving it to another pod and thus
freeing up resources for the remaining components.

B. Workload and evaluation metric

We created a synthetic workload to evaluate the proposed
microservice compositions and the performance impact of
adapting between them. The workload consists of a sequence
of requests to one of the components of the DC microservice,
in this case MRR, to query the resources of a simulated smart
city infrastructure. It simulates a high-entropy-low-volume
workload pattern (i.e., small and rarely repeated requests)
in order to highlight the need for a larger cache for the
component.

We measure the response time of each request as the
microservice is exposed to the workload. The measurements
are taken at three different times: before, during and after
adaptation. The aim is to evaluate the performance of both
the current and the new composition (thus showing the end
result of adaptation), as well as the (temporary) performance
impact while adaptation itself is taking place. Using this
evaluation approach, we run separate experiments, considering
the different microservice compositions shown in Figure 2.



C. Local-to-Extended adaptation

In this section we analyze the transition from the Local
to the Extended composition. In the Local composition, the
Cache components have a cache size of 1KB, which is enough
to store the response from a single database request made by
each of the microservice’s functional components.

The microservice then undergoes an adaptation that replaces
the cache component with a larger one, which provides the
functional components with 150KB of caching memory each.
We explore this specific adaptation to show the ability of
the system to perform vertical scaling within a microser-
vice. Through the replacement of some of its components,
we can manage the resources available to the microservice
without having to replace the microservice itself. Although
more conventional approaches exist for microservice resource
management, they generally entail the addition or removal of
resources for the entire microservice (e.g., at the container
level). Our approach, on the other hand, enables greater
precision, by handling resource allocation at a finer granularity.

Figure 3 depicts the response times obtained when running
the workload through the microservice before, during, and
after the adaptation. As expected, there is a performance gain
when running the microservice with the new composition. The
extra resources allocated to the component that handles the
database requests allows more responses to be cached, thus
requiring less remote calls to the database.

The graph in Figure 3 also brings attention to the cost of the
adaptation process. While the system is adapting, which takes
nearly 5 seconds, there is a marked increase in response time
for all requests made to the microservice. Thus, despite the
fact that vertical scaling of the microservice brings advantages
of itself, there’s a trade off to be expected, meaning that
performing adaptations too often may actually compromise
the overall performance. Note, however, that despite the tem-
porary decrease in performance, the microservice remains fully
functional during this kind of adaptation.

4.58 s

Fig. 3. Client-side response time of the DC microservice, showing the
performance of the Local and Extended compositions, as well as during
adaptation from the former to the latter.

D. Local to Distributed reconfiguration

The second kind of adaptation that we explore is the tran-
sition from the Local to the Distributed composition. As we
start the system with all the components of the microservice
sharing resources in the same pod, we explore the concept of
horizontal scaling by taking advantage of the elastic environ-
ment of the cloud. While there are existing tools to perform
this task, like the Horizontal Pod Autoscaler (HPA), they work
by replicating the entire microservice that is located in the
pod. We explore a different approach to horizontal scaling, by
managing the microservice as several components instead of
a single block. As the workload is focused on requests for
individual components of the microservice, we may adapt the
microservice by taking a less used component and relocating
it to another pod. This leaves the resources of the pod for the
components that are currently the most used.

The graph in Figure 4 shows the performance of the mi-
croservice before, during, and after such adaptation. Similarly
to the previous experiment, we see an expected improvement
in performance after the transition to the Distributed com-
position. Relocating a component frees up resources for the
components that remain in the pod. We also see an increase
in the duration of the adaptation phase to almost 40 seconds.
This is due to the remote interactions required to perform this
kind of adaptation. In particular, the Distributor module has to
connect to the GKE, through the ServiceCTL API, and make
requests for the creation of the required pods in the cloud.
Thus, the time that Kubernetes takes to create new pods, as
well as the communication time between the modules of the
architecture, add up to the adaptation time.

39.5 s

Fig. 4. Client-side response time during the transition from the Local to the
Distributed by relocating the least-used component of the microservice.

We also explore a second case of adaptation from the Local
to the Distributed composition. As queries to the DC microser-
vice are undemanding, we artificially increase the database
response time, so that we can better compare compositions
that involve the distribution of a component handling high
request loads. In this experiment we relocate a busy component
of the microservice. While the workload is being handled
by the MRR component, the Distributor module requests the



creation of an additional pod to relocate the component to.
As Figure 5 shows, a marked difference from the previous
experiment is that during the adaptation process the system
now experiences a performance disruption. While the overall
process takes approximately the same time, we see that the
component processing the requests is put on hold during most
of the time, i.e., from the moment the extra pod is created until
the component is properly instantiated and restarted in the new
location. Note that the x-axis refers to requests (instead of
time), and that the peak at the end of the adaptation process,
which refers to a single request, actually takes most of the
total adaptation time (approximately 30s). Nevertheless, there
is a significant performance improvement after the adaptation.

34.2 s

Fig. 5. Client-side response time for changing from the Local to the
Distributed composition, with relocation of the most used component.

V. CONCLUSION

In this paper we aimed to demonstrate the potential of
combining the concepts of emergent microservices and self-
distributing systems. Based on the use of a dynamic compo-
nent model to break a microservice down into smaller parts,
our approach supports runtime adaptation of microservices
at a fine-grain level. By changing the internal composition
of a microservice and exploiting both local and distributed
compositions in an elastic cloud environment, the approach
enables performance improvements and the management of
resource usage among the components.

We demonstrate and evaluate the approach using a case
study and experiments to explore different adaptation scenar-
ios. Although the results show the benefits of runtime mi-
croservice adaptation at a fine granularity, they also highlight
some limitations. While the system is capable of adapting itself
at runtime by seamlessly changing the internal composition
of microservices, each adaptation has a performance cost,
which must be taken into account in relation to the potential
performance improvements. In particular, compositions that
require the relocation of components that are in active use
have a higher cost in terms of performance, as the component
is put on hold during most of the adaptation process.

In future work, we will explore adaptations that involve
more general composition patterns, such as by relocating

and/or replicating different combinations of parts of the mi-
croservice. We also aim to explore the learning capabilities
of the ESS framework [9] to enable exploration of the search
space and selection of the best composition in a fully au-
tonomic way. Lastly, we aim to explore different types of
microservices (e.g., CPU-intensive, memory intensive) and
scenarios in which the approach can have the highest positive
impact.
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