
Exploiting the Potential of the Edge-Cloud
Continuum with Self-distributing Systems

Roberto Rodrigues Filho, Luiz F. Bittencourt
University of Campinas
Campinas-SP, Brazil

{robertor, bit}@ic.unicamp.br

Barry Porter
Lancaster University

Lancaster, UK
b.f.porter@lancaster.ac.uk

Fábio M. Costa
Federal University of Goiás

Goiânia-GO, Brazil
fmc@inf.ufg.br

Abstract—The Edge-Cloud Continuum offers a wide range of
adaptive deployment settings for modern applications. However,
in order to exploit the full potential of the edge-cloud infras-
tructure and platforms, applications have to be carefully crafted
to be stateless and self-contained in small services or functions,
i.e., the opposite of the classic stateful monolithic applications.
In this paper, we explore an alternative approach that allows
stateful single applications to also exploit the full potential of the
edge-cloud continuum. We explore the concept of Self-distributing
Systems (SDS) as a general approach for code offloading and as an
elastic application-level mechanism for performance scale-out on
the edge-cloud continuum. Our preliminary results indicate that
SDS enables enough flexibility for applications to fully explore
the edge-cloud resource mixture. Particularly, we describe our
state management strategies for stateful code mobility; explore
SDS as a general mechanism to exploit horizontal scaling on the
cloud; and examine SDS as a general code offloading mechanism
to move code from edge to cloud, showing the scenarios where
our approach enables applications to positively exploit the edge-
cloud continuum for better performance.

Index Terms—self-distributing systems, state management,
edge-cloud continuum

I. INTRODUCTION

Blair [1] argues that volatility is one of the main causes
of complexity in modern distributed systems. The constant
changes that occur in a system’s operating environment,
in every layer (i.e., infrastructure, platform and applica-
tion/services), require systems that are equipped to adapt
themselves to accommodate new operating conditions as and
when they occur. A wide range of technologies have been
design to help build adaptable and flexible infrastructures and
platforms to handle the volatility issue.

Technologies such as cloud computing and edge computing
offer on-demand provision of computing resources and user-
proximate service execution respectively, allowing a wide
range of deployment variants. At the platform level, containers
(e.g., Docker, containerd) and container-orchestrator technolo-
gies (e.g., Kubernetes, Mesos) allow self-contained services to
be deployed, replicated and moved across the infrastructure.
These technologies enable a wide range of flexible deployment
settings that could be drastically changed to accommodate new
operating conditions at runtime for all sorts of services and
applications (e.g., autonomous vehicles [2], deep learning [3],
augmented reality [4], etc.).

These infrastructure and platform-level technologies, how-
ever, require the application to be carefully crafted. The
main barriers in traditional software development that prevent
exploitation of these cloud technologies are i) monolithic
applications, and ii) stateful applications. Monolithic appli-
cations are large and tightly-coupled pieces of software that
are difficult to migrate and replicate unless they are carefully
designed for that purpose. Stateful applications are a further
challenge to the migration and replication of compute as the
state has to be properly managed for assured consistency.

In response to those issues, new architectural styles for
developing applications have been widely adopted, particularly
around Microservices [5] and Serverless Computing [6]. These
architectures consist of a collection of stateless, self-contained,
highly reusable small services/functions, which allow the full
exploitation of adaptive platforms and infrastructures in the
cloud-edge continuum. These approaches provide architectural
guidelines of how to develop cloud-capable systems, but still
require developers to carefully craft (or refactor) systems to
match this architectural style. Furthermore, these approaches
require the strict separation of state from services/functions,
where all application state is typically pushed into a database,
and also require up-front decision-making on how large or
small each microservice or function should be.

In this paper, we explore an alternative approach to exploit
the full potential of the edge-cloud continuum, in which parts
of regular local applications can be automatically distributed
and scaled out. We explore and expand the Self-distributing
Systems (SDS) concept [7], [8] to allow the development of
local, stateful applications that are replicated or moved across
a distributed infrastructure at runtime, facilitating horizontal
scaling and code offloading on the edge-cloud continuum. SDS
employs a lightweight component model (e.g., Dana [9], Open-
Com [10], etc.) to create componentised local applications that
are able to replace components at runtime to change their
behaviour. In detail, locally-running components are swapped
for proxy components that implement an RPC layer to forward
function calls to a relocated remote component. By relying
on the relocation mechanism enabled by SDS, we construct
general applications that relocate parts of itself across any
infrastructure. This paper’s main contributions are:

i) State management strategies for transparently relocating
stateful components to remote hosts;



ii) SDS extension for performing stateful code mobility and
horizontal scale out on the edge-cloud continuum.

Our results1 demonstrate that the concept of SDS with
transparent state management enables sufficient flexibility for
componentised local applications to allow them to fully ex-
plore the potential of the edge-cloud continuum. Particularly,
we explore the advantages and limitations of transparent state
management strategies; we also examine the transparent relo-
cation and replication of software components to scale web-
based applications on the cloud; and finally, we experiment
with stateful component relocation as an alternative to classic
code offloading [11] from edge to cloud.

II. BACKGROUND

This section presents the two main concepts on which our
approach was built. We first present the concept of component-
based models, focusing the discussion on the adaptation algo-
rithm implemented by Dana [9], which is key to realise our
proposed transparent state management framework. Then, we
visit the concept of Self-distributing Systems [7], which we
expand to add a state management framework to explore the
self-distribution of stateful components.

A. Software Adaptation on Component-based Models

The component-based model is a programming model that
allows software systems to be built as a result of the composi-
tion of small, reusable, and swappable components. The most
relevant examples of such models are OpenCom [10], OSGI2,
and most recently, Dana [9].

A component-based software system is composed of
small components that are connected following the required-
provided interface policy, i.e., given a specific interface I ,
a component that provides interface I implements its func-
tions, whereas the components that require interface I use
its defined functions to implement their own. The component
that provides interface I is connected to the component that
requires I . Furthermore, the component-based runtime enables
the replacement of a component that provides interface I with
another that also provides I . By enabling this component
replacement, software written using such models allows the
system to change its behaviour at runtime.

Note that some of the components hold state, i.e., a set of
global variables defined in the component. The component-
based model runtime provides mechanisms that support seam-
less (i.e., no software downtime) adaptation of stateful compo-
nents. Fig. 1 illustrates the three main steps of the algorithm
that performs adaptation in Dana. The first part of Fig. 1 shows
component CompA connected to CompB through some
interface I . Following the component-based model, CompA
requires interface I to work, and thus, any component that
implements I can be connected to CompA to satisfy its depen-
dency. In the described example, both CompB and CompC

1Code repository with detailed tutorial to replicate our results: https://github.
com/robertovrf/PFGElasticity

2OSGI Working Group: https://www.osgi.org/

Function Calls

CompA CompB

2

Function Calls

CompA CompC

4

CompA

CompB

CompCFunction Calls

state copy

Function Calls

CompA CompB

state

Interface I

1

3

Interface I

Interface IInterface I

state

state

state

Fig. 1. The main stages of swapping a stateful component executing on a
local process: (1) the initial system with its components and state; (2) pause
incoming function calls; (3) copy state into the newly instantiated component;
(4) connect the new component and resume incoming function calls.

implement I , allowing either one of these components to be
connected to CompA.

Fig. 1 shows the replacement of the stateful component
CompB that satisfies CompA dependency to CompC, a
different stateful component that also implements interface I
and also satisfies CompA. The second part of Fig. 1 (step
2) shows the first step of the adaptation algorithm, which
consists of stopping function calls from CompA to CompB.
This step is crucial when the component to be replaced holds
state. Pausing incoming function calls guarantees that the
state remains unchanged during the adaptation process. In
step 3, the new component is loaded to memory, and a copy
of CompB’s state is transferred to CompC. Finally, in the
final step (step 4), CompA is connected to CompC, and the
incoming function calls are resumed and handled by CompC.

The adaptation algorithm is a generic algorithm employed
by different models that enables the adaptation of stateful
components. The Dana model, in particular, offers a way to
determine the state that is shared among different component
variants (i.e., different components that implement the same
interface). Dana offers the transfer keyword used to define
global variables in the interface. Thus, every component that
implements said interface inherits all variables and their types,
ensuring that all component variants hold the same set of
variables as their local state. This facilitates the identification
of the state in a component and the action of transferring state
between component variants during adaptation, since they all
hold the same set of variables of the same exact type.

B. Self-distributing Systems

Self-distributing Systems (SDS) [7] enable local software,
i.e., applications built to execute on a single process, developed
using a component-based model to relocate and replicate local
components at runtime. Employing Reinforcement Learning
(RL) [12] algorithms, these systems are able to learn which
local components to relocate/replicate across an infrastructure
to optimise their performance (e.g., decrease response time)
under different operating environments.

https://github.com/robertovrf/PFGElasticity
https://github.com/robertovrf/PFGElasticity
https://www.osgi.org/


Proxy

1

3

Interface I

Function Calls

CompA CompBInterface I

2

CompA

CompB

Function Calls

Interface I

Comp B

Comp B

Comp B

Proxy

Instantiating Function Calls

CompA Proxy

4

Comp B

Comp B

Comp B

RPC

Fig. 2. The main stages of distributing replicas of local components. (1)
pause incoming calls; (2) instantiate the distribution proxy component; (3) the
proxy instantiates multiple instances of the replicated component; (4) replace
component to the proxy and resume incoming function calls.

SDS apply proxy components as the basis for relocating
and replicating local components. Leveraging the adapta-
tion mechanisms supported by component-based models (see
Sec. II-A), SDS relocate local components by replacing them
with proxy components, as illustrated in Fig. 2. The proxy
then implements Remote Procedure Calls (RPC), forwarding
incoming function calls to the relocated component.

Fig. 2 illustrates the steps to realise the replication of
stateless components. The first step of the adaptation algorithm
is to stop incoming function calls to the soon-to-be-replaced
component (step 1). Then, the proxy component is loaded into
the memory (step 2). Besides acting as a regular proxy, the
proxy component is also responsible for loading new instances
of the relocated component to external processes (step 3). After
the relocated instances are loaded, the proxy component is
connected to CompA, and the application resumes (step 4).
Note that the adaptation algorithm treats the proxy component
like any other component during adaptation. Before connecting
any component to the rest of the application, the adaptation
algorithm invokes a special function implemented by the
component. This function is often responsible for preparing the
component to start execution. Distribution proxy components,
however, use this function to create new instances of the
relocated component. After the application is resumed, all
function calls made to the proxy are forwarded to the relocated
component through Remote Procedure Calls (RPC). On the
external process, where the relocated component is executing,
there is a reverse proxy component that implements the remote
end of the RPC, handling incoming function calls, forwarding
the calls to the right function, and returning the function return
values to the distribution proxy component.

This work presents an extension of the SDS concept. We
extend the SDS to enable distribution proxy components
to handle relocation and replication of stateful components.
We also explore the local component relocation/replication
mechanism to exploit code offloading and horizontal scale out
in the edge-cloud continuum.

III. MANAGING STATE IN SELF-DISTRIBUTING SYSTEMS

This section introduces the state management framework
and describes the extension to the adaptation algorithm in the
Dana component-based model. It also describes the integration
of the extended version of SDS to a container-orchestrator
that allows the exploitation of application code mobility and
horizontal scale out in the edge-cloud continuum.

A. State Management Approach

In some scenarios, local component distribution across the
infrastructure increases the system’s performance as incoming
calls are spread across multiple instances of the replicated
component. For stateful components, however, replication
(when not properly handled) leads to state consistency issues
and, ultimately, to a system’s malfunction. The state manage-
ment approach aims to provide a framework to support state
consistency when replicating stateful components. The frame-
work consists of a collection of distribution proxy components
that manage state when replicating stateful components.

The distribution proxy implements four main tasks: i) the
creation of the replicated component instances in external
processes; ii) transferring of the state from the original local
component to the replicas; iii) the implementation of the RPC
that forwards incoming function calls to the replicas; and,
finally, iv) the algorithm for maintaining state consistency
amongst the relocated component replicas. The first two tasks
are carried out when the adaptation algorithm is executing.
Fig. 3 illustrates the adaptation algorithm for replicating state-
ful components across infrastructures.

Comp A
Comp B

Proxy B
Function Calls

state copy1

3

2

Comp B

Comp B

transferring state

Comp B

Function Calls

Comp A Proxy B

RPC Comp B

Comp B

Comp B

Fig. 3. The steps to replicate stateful components across a distributed
infrastructure: (1) copy local state to a proxy component; (2) instantiate and
transfer state to newly created remote replicas of the component; and (3)
resume incoming function calls.

The adaptation algorithm for replicating stateful compo-
nents is similar to replacing stateful components with local
ones. The first step is to stop function calls to reach the
soon-to-be-replaced component, then create an instance of
the new component (in this case, a distribution proxy). After
creating the proxy instance, a copy of the component state is
transferred to the proxy (step 1 in Fig. 3). Up until this point,
the adaptation process remained unchanged. After the proxy



receives a copy of the state, the proxy creates the instances of
the replicated component in the remote processes (this process
is described in Sec. III-B). Once the remote instances are
created, the proxy transfers a copy of the state to the remote
instances (step 2). Finally, the proxy component is connected
to CompA, and the application is resumed (step 3).

State transferring is a task performed by the distribution
proxy in two situations: when distributing (replicating or relo-
cating) stateful components and when the system is adapting
from a distributed composition with replicas of stateful com-
ponents to a local composition (where all components execute
in the same initial process). The first situation is illustrated in
Fig. 3. In the second situation, where the application changes
from a distributed composition to a local one, the new state
that the replicas hold are copied back and merged in the proxy
component before copying the state from the proxy to the new
component. Besides these two situations, the state can either
be entirely copied into the remote instances (full replication) or
divided amongst the replicas (sharding), so each replica holds
a piece of the original state. These are the two distribution
proxy we evaluate in this work (see Sec. IV).

After the application is resumed and the proxy forwards
incoming function calls to the replicas, the proxy state executes
its state consistency algorithm. A proxy-provided state consis-
tency is essential because the replicated stateful component
is not initially designed for replication. The proxy’s job is to
ensure that a state change in a specific replica is propagated to
the other replicas so that the system state remains consistent.
As there are no one-solution-fits-all cases for state consistency,
different proxy components may implement radically different
approaches. We note that there are two concerns all state
consistency approaches have to consider: i) the tolerance level
for inconsistency the application accepts, and ii) the state’s
characteristics (data type format, values they hold, etc.).

This paper evaluates two different distribution proxy im-
plementation: full replication and sharding. Our case study
is a simple web application that handles requests to add
or retrieve numbers from a list. The full replication proxy
creates multiple replicas of the list and copies the local
list content to all replicas. As new requests are handled by
the server, the proxy forwards the incoming requests to all
instances of the list maintaining all replicas with the same
state. The sharding implementation, on the other hand, splits
the list content amongst the available replicas using a hashing
algorithm similar to a Distributed Hash Table (DHT). Each list
shard has a range of values they host, so that when a number
is added or searched, the proxy applies a hash function to the
number and knows which replica to forward requests.

B. Container-Orchestration Integration

A crucial part of the adaptation algorithm is the creation
of component replicas across an infrastructure. After copying
the state to the proxy, the process of creating replicas of the
component across the infrastructure begins. Here we describe
all the elements involved in creating replicas of components
across elastic environments.

The mechanism we explored was developed and explored by
Dias et al. [13]. The elastic environment is essentially a cluster
of virtual machines on a cloud infrastructure managed by a
container-orchestrator (in this case, Kubernetes3). Kubernetes
provides an API service that allows applications to deploy and
manage containers life cycle.

Kubernetes manages containers on cloud-based and edge
infrastructures (e.g., KubeEdge4). In a Kubernetes-managed
infrastructure, we can explore horizontal application scaling
by creating multiple copies of a container. We can also explore
code mobility by transferring a container running on the
edge to the cloud. We explore horizontal scale-out and code
offloading using Kubernetes at the platform level.

The proxy component interacts with Kubernetes service API
to create multiple containers running a Dana-based application
and a repository full of the application components on the
container’s file system. The Dana-based application is a service
that essentially implements two functions: i) a function that
receives a component’s name as a parameter and loads the
component and all its dependencies and executes it; and ii) a
function that receives a JSON-formatted state, translates it to
a Dana data type and inserts it into the loaded component.

Once the containers are running, the proxy sends a request
to the Dana application to load the component remotely. After
the component is loaded, the proxy sends a copy of the state
to be inserted into the component. The proxy component
performs the state transferring for every replica created (the
number of replicas to create is hard-coded into each proxy).

IV. EVALUATION

This section reports the main findings of our preliminary
exploration of SDS to exploit the edge-cloud continuum. First,
we experiment with the self-distribution of the web application
as a generic alternative for code offloading from the edge to the
cloud. Then, we use SDS as a mechanism for cloud horizontal
scaling. We used both the cloud and a device on the edge.
For the cloud, we used a Google Cloud Kubernetes-managed
cluster (GKE) with 5 virtual machines. Each VM is equipped
with 2 vCPUs and 8GB of memory. For the edge, we used a
laptop (1,4 GHz Quad-Core CPU and 8GB of memory) placed
on the same local network as the client scripts.

We first evaluate self-distribution as a code offloading alter-
native for the application’s performance enhancement. Fig. 4
shows the results of our first experiment. We evaluate the
performance (in terms of response time) of the web application
in three configurations. We executed the web application
entirely on the edge (blue line); the application’s entry-point
on the edge and the list component on the cloud (red line); and
finally, the self-distributing version of the application, capable
of switching at runtime between the edge and cloud.

As part of the experiment, we executed the same client
workload for all evaluated configurations. The workload con-
sisted of issuing sequential requests that added items to the

3Kubernetes – Container-orchestration: https://kubernetes.io/
4KubeEdge – Edge computing framework: https://kubeedge.io/en/

https://kubernetes.io/
https://kubeedge.io/en/


List size (# of items)

R
es

po
ns

e 
Ti

m
e 

(m
s)

10

100

1000

10000

500 1000 1500 2000 2500 3000

Edge Cloud Self-Distributed Systems

Fig. 4. Response time of the web application running on the edge (blue
line); running parts on the edge and parts on the cloud (red line), and a self-
distributing version that starts on the edge and moves (at 1500 size on the
x-axis) parts of its components to the cloud (yellow line).

list, and after each item was added, the application sorted
all elements in the list. Due to the increasing number of
inserted items, the processing time for each request increases.
Fig. 4 shows that response time increases faster when the
web application runs on the edge. This effect is because the
application has a single list running on the edge. In contrast,
the cloud configuration takes advantage of the cloud resources
and splits the list into two shards, splitting the incoming
workload between them.

In this scenario, after 2000 items on the list, running the
application on the cloud is best, despite the high latency added
to forward requests to the cloud. We can also note that the SDS
version of the application can take advantage of both the edge
and cloud, as it can seamlessly relocate its list to execute on
the cloud as the application runs. Also, note that the yellow
line performs similarly to the application running on the edge.
After the 1500 mark on the x-axis, the application relocates its
list component to the cloud, performing similarly to the fixed
cloud configuration. We also show that self-distribution has a
high cost for state transfer, which can be noted as a series of
sequential spikes on the yellow line right after the application
is adapted (1500 mark on the x-axis).

Finally, we experimented with the cloud horizontal scaling
(Fig. 5). Again, we subject the web application to the client’s
workload, which consists of sequential requests to the appli-
cation to add items and sort the list. We executed the SDS
web application in 4 configurations: the web application in a
single process (local – blue line), the SDS version of the web
application with two shards (red line), four shards (yellow
line), and eight shards (green line). The graph shows that as
we use SDS to split the list into shards, the application can
handle the incoming workload with a smaller response time.

V. RELATED WORK

This section surveys the most relevant related work in code
offloading to edge-cloud infrastructures, adaptive systems that
exploit the edge-cloud continuum, and state management in
Object Request Brokers (ORB) architectures.

List size (# items)

R
es

po
ns

e 
Ti

m
e 

(m
s)

Fig. 5. Response time of the web application in different compositions
exploring elasticity (local, 2-shards, 4-shards and 8-shards) as the size of
the list increases overtime.

Code offloading is vastly explored in mobile devices [11].
More recently, other devices were also leveraging the ad-
vantages of code offloading from device to edge-cloud in-
frastructures [14]. These code offloading approaches require
software engineers to carefully design ad-hoc solutions for
code offloading, considering both code mobility mechanisms
and state management (when applicable). On the other hand,
our approach leverages a generalised programming model and
a proxy-based strategy that simplifies and generalises code
mobility. It also establishes a predefined proxy structure where
engineers provide state management code accounting for the
state consistency tolerance for their application.

Self-adaptive systems, i.e., systems that change their be-
haviour or structure to accommodate changes in the operating
environment, also exploit the edge-cloud continuum [15], [16].
In such approaches, systems have an adaptation logic that
guides adaptation to better exploit edge-cloud infrastructure
resources. Although we have not explored self-adaptation in
this study, our approach is inspired by the Self-distributing
Systems concept that employs Reinforcement Learning algo-
rithms to learn, at runtime, optimal distributed compositions.
Furthermore, our approach uses a component-based model
to abstract software compositions to actions for the learning
algorithm. Due to the component model, the execution of the
learning approach is generic, i.e., application independent, and
can be used in different SDS-based applications without any
change to the learning algorithm.

Finally, the proxy implementation of state management
consistency is the most crucial part of the presented approach.
Our described approach was heavily inspired by previous work
on state consistency on ORB-based architectures [17], [18].
These approaches are complementary to our own and provide
the basis for state management for SDS.

VI. FINAL REMARKS

This section concludes the paper by listing a set of further
challenges and new lines of research to pursue as future work.

This work presented a preliminary study on the first version
of the extended SDS to support state management. As part of



this first attempt at this extended concept, we have identified
a set of challenges to be addressed in the future.

One of the most crucial challenges is to further generalise
state management within Self-distributing Systems. We devel-
oped the proxy components for the list example, knowing that
the stored items were numbers. In reality, however, any item
could be stored in a list, and a more generic proxy extension
would be necessary to handle generic typed lists properly.

Another critical challenge is to reduce the added burden
placed on the application developer, which is now required
to develop the application and the distribution proxy compo-
nents. We envision the creation of a repository of distribution
proxy components for the widely used abstract data types (e.g.,
list, maps, dictionary, sets, trees, etc.). This repository would
allow maximum reusability of distribution proxy components
for applications, as new proxy components are added to the
repository for every designed new interface.

Another challenge is the provision of fault tolerance mech-
anisms for the distributed stateful components. As the ap-
plication is initially designed to execute in a single process,
the distribution of local components may introduce errors the
application is not expecting. The distribution proxy has to
provide fault tolerance mechanisms to prevent such situations.

Moreover, as part of the adaptation algorithm supported by
the component model runtime, the state transferring step may
cause the system some disruption due to the time it may take
to complete the task. The duration of the state transferring
step is directly connected to the size of the state. Part of this
challenge is to consider a lazy approach for state transfer.

To conclude, the state management overhead added by the
distribution proxy may also be prohibited depending on the
application and scenario. Thus, an important challenge is to
consider the proxy implementation’s performance overhead.

This paper introduced an extension to the Self-distributing
Systems (SDS) concept to enable the distribution of stateful
components across infrastructures. As a result, the extended
SDS presented itself as an alternative to facilitate code mobil-
ity and horizontal scaling on edge-cloud platforms. To demon-
strate SDS’s potential in exploiting the edge-cloud continuum,
we designed a stateful single web application, showing that it
can self-distribute its internal components across the edge and
cloud to enhance its performance in different scenarios.

In future work, we expect to explore Reinforcement Learn-
ing (RL) algorithms to learn optimal distributed compositions
that exploit the edge-cloud continuum resources at runtime. A
solution similar to the one described by Rodrigues-Filho, et
al. [7]. We also aim to explore different state management ap-
proaches, data structures, and applications (e.g.,, autonomous
vehicles, video streaming, or augmented reality) to further
explore self-distribution on the edge-cloud continuum.

ACKNOWLEDGMENT

The authors thank the Computer Engineering students from
University of Campinas: André Papoti, Bruno Berbare, Felipe
Guardão, Gabriel Oswaldo, and Ricardo Koaro for devel-
oping some of the ideas presented in this paper. Roberto

Rodrigues-Filho thanks FAPESP for supporting his postdoc-
toral research at INF/UFG during the time this work was
developed (2020/07193-2). This research is part of the INCT
of the Future Internet for Smart Cities funded by CNPq
proc.465446/2014-0, CAPES -– Finance Code 001, FAPESP
procs.14/50937-1 and 15/24485-9. Finally, this work was also
funded by FAPESP under the grant 2019/26702-8.

REFERENCES

[1] G. Blair, “Complex distributed systems: The need for fresh perspectives,”
in 2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2018, pp. 1410–1421.

[2] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge computing
for autonomous driving: Opportunities and challenges,” Proceedings of
the IEEE, vol. 107, no. 8, pp. 1697–1716, 2019.

[3] F. Wang, M. Zhang, X. Wang, X. Ma, and J. Liu, “Deep learning for
edge computing applications: A state-of-the-art survey,” IEEE Access,
vol. 8, pp. 58 322–58 336, 2020.

[4] P. Ren, X. Qiao, J. Chen, and S. Dustdar, “Mobile edge computing–a
booster for the practical provisioning approach of web-based augmented
reality,” in 2018 IEEE/ACM Symposium on Edge Computing (SEC).
IEEE, 2018, pp. 349–350.

[5] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microservice
architecture: aligning principles, practices, and culture. ” O’Reilly
Media, Inc.”, 2016.

[6] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski et al., “Serverless
computing: Current trends and open problems,” in Research advances
in cloud computing. Springer, 2017, pp. 1–20.

[7] R. Rodrigues-Filho and B. Porter, “Hatch: Self-distributing systems for
data centers,” Future Generation Computer Systems, vol. 132, p. 80,
2022.

[8] R. Rodrigues Filho and B. Porter, “Autonomous state-management
support in distributed self-adaptive systems,” in 2020 IEEE International
Conference on Autonomic Computing and Self-Organizing Systems Com-
panion (ACSOS-C). IEEE, 2020, pp. 176–181.

[9] B. Porter and R. Rodrigues Filho, “A programming language for
sound self-adaptive systems,” in 2021 IEEE International Conference on
Autonomic Computing and Self-Organizing Systems (ACSOS). IEEE,
2021, pp. 145–150.

[10] G. Coulson, G. Blair, P. Grace, A. Joolia, K. Lee, and J. Ueyama, “A
component model for building systems software,” in Proceedings of the
Eighth IASTED International Conference on Software Engineering and
Applications (SEA ’04). Acta Press, 2004.

[11] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mobile networks and Applications,
vol. 18, no. 1, pp. 129–140, 2013.

[12] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[13] R. Silva Dias, R. Rodrigues-Filho, L. F. Bittencourt, and F. M. Costa,
“Runtime microservice self-distribution for fine-grained resource alloca-
tion,” in 15th IEEE/ACM International Conference on Utility and Cloud
Computing Companion, 2022.

[14] K.-L. Wright, A. Sivakumar, P. Steenkiste, B. Yu, and F. Bai, “Cloud-
slam: Edge offloading of stateful vehicular applications,” in 2020
IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 2020.

[15] A. Cattermole, J. Dowland, and P. Watson, “Run-time adaptation of
stream processing spanning the cloud and the edge,” in Proceedings
of the 14th IEEE/ACM International Conference on Utility and Cloud
Computing Companion, 2021, pp. 1–7.

[16] L. Ju, P. Singh, and S. Toor, “Proactive autoscaling for edge computing
systems with kubernetes,” in 14th IEEE/ACM International Conference
on Utility and Cloud Computing Companion, 2021.

[17] P. Narashimhan, L. E. Moser, and P. M. Melliar-Smith, “State synchro-
nization and recovery for strongly consistent replicated corba objects,”
in 2001 International Conference on Dependable Systems and Networks.
IEEE, 2001, pp. 261–270.

[18] P. Narasimhan, L. Moser, and P. Melliar-Smith, “Consistency of par-
titionable object groups in a corba framework,” in Proceedings of the
Thirtieth Hawaii International Conference on System Sciences, vol. 1,
1997, pp. 120–129 vol.1.


	Introduction
	Background
	Software Adaptation on Component-based Models
	Self-distributing Systems

	Managing State in Self-distributing Systems
	State Management Approach
	Container-Orchestration Integration

	Evaluation
	Related Work
	Final Remarks
	References

