Autonomous State-Management Support 1n
Distributed Self-adaptive Systems

Roberto Rodrigues Filho, Barry Porter
School of Computing and Communications
Lancaster University
Lancaster, UK
Email: {r.rodriguesfilho, b.f.porter} @lancaster.ac.uk

Abstract—Modern systems are increasingly required to be
adaptable in order to handle constantly changing environments.
Adaptability is often based on the ability to adapt the be-
haviour of a running system where multiple implementations
are available. Example of this are technologies such as reflective
middleware and meta-models which offer control over how
logic is wired together. While these technologies support high
degrees of autonomous flexibility around the compute element
of distributed systems, they completely neglect handling state in
an externally-managed, automated way. This paper advocates
a reflective model over system state, to complement existing
models that enable meta-management of behaviour. This concept
has the potential to support an entirely new dimension of self-
adaptive systems, offering a richer set of options to compose
a system. We demonstrate a possible implementation of this
concept by extending a lightweight component-based model;
our implementation can transparently and generically relocate,
replicate, and shard stateful components. Using a set of annota-
tions, our framework constructs a pool of possible compositions
which distribute any system using a variety of different state
management options. We posit that this offers an unexplored
dimension of self-adaptive systems, supporting novel concepts
such as self-distributing systems which can emerge to best match
their environment.

Index Terms—reflection, meta-model, state management, self-
adaptation

I. INTRODUCTION

Modern systems are increasingly required to handle the high
levels of volatility present in their operating environments.
This has motivated a wide range of research in self-adaptive
and autonomous systems. However, the majority of work in
this area is based on the ability to adapt the behaviour of a run-
ning system where multiple implementations are available; for
compositional adaptation this is based on technologies such as
reflective middleware [10] and meta-models [16] which offer
introspection and control over how logic is wired together. In
distributed systems, these ideas are partially operationalised
in technologies such as cloud and edge computing which
use a variety of container technologies to support flexible
infrastructures which can scale up and down as needed and
place containerised behaviour at different locations.

While these technologies support high degrees of au-
tonomous flexibility around the compute element of distributed
systems, they lack support for handling state in an externally-
managed, automated way. Developing systems with microser-
vices, for example, forces engineers to manually separate

state from components, using a particular database technology.
By doing this, stateless components are then free to be
autonomously relocated and replicated across an infrastructure
as needed. This state separation task remains highly manual
to engineer, requires careful design of distributed state consis-
tency models that best match the goals of the system, and in
deployment leaves systems with only one fixed way to handle
their state — making it hard to explore alternatives that could
increase performance across different deployment conditions.

In this paper we advocate reflective models over system
state, offering new degrees of flexibility in distributed system
design and new dimensions of self-adaptive systems research
as a result. Successfully implementing this would enable
engineers to express state and behaviour naturally together in
the same components, enabling autonomous frameworks to au-
tomatically and simultaneously manage both the distribution of
behaviour and state as coupled system elements. For example,
by knowing which functions in an interface cause state updates
and which only read state, we can begin to understand how
to automatically replicate a component — including its state
— and which distributed state consistency models are viable.
Likewise, by modeling how interfaces manage collections,
we can automatically shard stateful components across hosts,
using generic proxies to find which state belongs to which
shard for each request. This paper has two contributions:

1) We identify system state as a forgotten element of
runtime reflection, and motivate why this is a crucial
research direction for future self-adaptive systems;

2) We present one possible reflective meta-model for state
which offers a set of new degrees of flexibility for
autonomously reasoning about and (re)composing dis-
tributed system with stateful components;

The remainder of this paper is structured as follows: Sec. II
describes related work. Sec. III describes our extension to
a component-based model, showing how a simple reflective
state model can aid in autonomous state management via
relocation, replication and sharding of stateful components.
Sec. IV concludes the paper.

II. RELATED WORK

Our work draws inspiration from the reflective middleware
[10] community which applies reflection as a basic operation
to enable adaptation on software systems at runtime. Although



this was widely used to support systems adaptation in different
domains (e.g. mobile applications [6] and QoS [4]), there is
no work to our knowledge that applies reflection to enable
autonomous management of components’ state at runtime to
specifically support a range of possible distributed systems
compositions. This goal is particularly useful in modern sys-
tems where cloud [12] and edge computing [15] technologies,
which make infrastructure more flexible, are widely adopted.

In contrast to our approach, prevailing technologies go in
the opposite direction and try to eliminate state from most
components. Stateless components can be freely replicated
or placed on any machine across the infrastructure, while
state is completely and manually separated into specialized
components such as databases. This approach is most clearly
embodied in the recent Microservices trend [7], which are
combined with technologies such as Mesos [9], Kubernetes
[2], or serverless computing [11], as the ‘de facto’ standard in
creating large-scale web-based systems for handling stateless
compute elements which can take full advantages of the
flexible infrastructures supported by the cloud.

Underpinning these frameworks is the technology of con-
tainers [1]. This is analogous to a ’component model’, which
isolates self-contained deployable software modules, enabling
automated replication and placement of parts or the entire
system across a wide range of compositions to deal with a
wide range of real-time challenges. For scalability, containers
are used to encapsulate microservices, for example, and to
replicate them as incoming workload increases. For network
latency, containers are used to ship self-contained software
to run on the network edge. While this presents very useful
degrees of freedom for automated management of behaviour,
none of these technologies offer automated sfate management.

We propose a major step-change to this thinking, in which
a meta-model automatically and transparently supports exter-
nalised state management in a unified way with the com-
putation (or behaviour) of a distributed system. We present
this model as an extension of the common characteristics of
runtime component models, offering a new form of reflection
for system state at runtime, and show how this meta-model
can support a range of existing scaling and consistency models
over system state according to the current context.

III. APPROACH

Self-adaptive systems are key to handle the increasing levels
of volatility in contemporary operating environments. For
single-host (local) systems that use compositional adaptation,
where different pieces of logic are swapped in and out to
change the system’s behaviour, runtime component models are
a popular implementation choice. These include frameworks
written in an existing programming language such as Fractal
[5], OpenCom [3], and OSGI [8], and full programming
languages specially designed to support continuous adaptation
such as Dana [13]. These component-based approaches sup-
port runtime adaptation of fine-grained components, enabling
seamless runtime architectural adaptation of software systems.

We use runtime component models as a foundation for
our state meta-model because they already support dynamic
system composition in a well-formed way — though they do
not tend to consider issues of distributed systems or state
management. We extent runtime component models to support
distribution of their components transparently, so that any
component can be distributed across a network without having
to be explicitly programmed for this purpose. Rather than
using container technologies or microservices which have no
explicit dependency or service description model, this ap-
proach allows us to leverage runtime reflection over strongly-
typed interfaces in order to automatically analyse the set of
possible compositions of a given system and ensure soundness
of that system as we adapt between different compositions.

By extending runtime component models to support trans-
parent migration of components between hosts, we also open
the possibility of transparently replicating components for
load-sharing in scale-out environments, and of sharding com-
ponents to more dynamically load-share among popular state
regions. To achieve these capabilities, however, we require
more than a meta-model to describe the abstract logic of
components via their interfaces; we also require a meta-model
to abstractly describe the state stored in each component
so that we can reason over how to distribute, replicate, or
shard this state in a safe way. This allows any local system,
which tend to be naturally programmed in a way that tightly
integrates state with logic, to benefit from fully automated
distribution and a wide range of possible distributed state
management approaches depending on the current context.

The realisation of this vision has the potential to support
fully automated decision-making about distributed systems
design, including placement and replication of behaviour and
management of associated state in approaches such as tra-
ditional databases, NoSQL-style solutions, distributed object
stores, or cache clusters, depending on the constraints around
each element of state and the current deployment context.

In this section we describe our prototype model for transpar-
ent state management in distributed systems, using the above
concepts. We first define our assumptions on the features that
a local/single-host component model should support to enable
our approach; for this paper we chose the Dana component-
oriented programming language to illustrate key features of
the model. We then define a distributed model, which is an
extension of the local model and supports replication and
relocation of stateless components, before defining a new
meta-model that supports autonomous reasoning about state
which enables transparent distribution of stateful components.

A. Local Model

We assume that a local component model consists of a set of
rules used to develop lightweight component-based software.
These rules are interpreted by a framework or a language
runtime to support composition of software out of small
components and the hot-swapping of components at runtime
without breaking the system. This could be implemented in a
component model such as Fractal, OSGi, OpenCom, or Dana.



Code: Software architecture:

Component
Component 1 L Link%dLiSl
ist
A

interface A {
transfer List<Data> list
void register(Data item)

Component 1:

component provides A requires List {
void register(Data item) {
list.add(item)

}

‘Component Main:

component provides Main requires A { i
void main{AppParam params][]) { Legend:

A.register(new Integer(20)) .

! —

Fig. 1. Component and interface’s anatomy. On the left side, there is an
example of an interface and two components. On the right side, there is an
illustration of three connected components to form an executing system.

provides interface

reguires interface

In these, each component must provide (i.e., implement)
a given interface, and may require a collection of interfaces
(i.e., dependencies) used to assist their implementation. Given
a collection of components, with their required and provided
interfaces, a runtime can connect compatible components
together to form a fully functioning system. Fig. 1 illustrates
this basic anatomy of components and composition.

Besides the highlighted keywords interface, component,
requires and provides that define interfaces, the component
implementation, and which interface is provided and required
by a component respectively, we also assume the presence
of a concept for which Dana uses the syntax transfer. The
transfer keyword defines the state that every component
which implements a given interface requires, such as the label
displayed on a GUI button, or the set of items stored in a hash
table. This exposes all such state to the component runtime,
and during the adaptation process this state can be extracted
from the old component and injected into the replacement
component, preserving key state across adaptations.

The adaptation process itself is orchestrated through a set
of special operators, shown in Fig. 2, and supported by
the component runtime through architectural reflection. We
briefly illustrate the local-system adaptation process using the
components and interface shown in Fig. 1, which links to
how we implement transparent distribution of components
in the following section. Consider the procedure to replace
Component; with Component, (a new component that is not
illustrated in Fig. 1) while the system is executing. The adapta-
tion process starts by loading the new component into memory
(using function (3) in Fig. 2). We then pauses the execution
of Component prq:n (function (4)) while we extract the state
from Component; and insert it into Component, (functions
(1) and (2) respectively). At the end of the state transferring
action, Components is connected to Component ysq:n (func-
tion (6)). Component; is then unloaded from memory and
finally Componentpsqin is resumed (through the execution
of function (5)). This adaptation process supports replacement
of stateful components and is crucial in supporting the devel-
opment of seamless adaptive software [14].

Existing Dana functions:
(1) State extractState(Component c)

(2) void insertState(Component c, State state)

(3) void load(String componentPath)

(4) void pause(Component c)

(5) void resume(Component c)

(6) void rewire(Component ¢, Interface i, Component newComponent)

Functions that are part of state management model:
(7) void loadLocalSideProxy(Component ¢, Type type, IP remotelP[])
(8) void loadRemoteSideProxy(Component ¢, IP remotelP)
Annotations that are part of the state management model:
(A) @read(key: <fieldName, parameterName=) or @read all)
(B) @write(key: <fieldName, parameterName=>)

(C) @strong_consistency

(D) @weak_consistency

Fig. 2. A list of Dana runtime functions and annotations that are used to
transparently support state management.

The ability to adapt behaviour in useful ways comes from
the fact that interfaces define an abstract version of a piece of
logic which can be implemented in multiple different concrete
ways — such as an interface which defines sorting operations
and different implementing components using different sorting
algorithms, or an interface which defines a GUI button wid-
get and different implementing components offering different
graphical button styles. In order to make state handling generic
across adaptations, we rely on the transfer syntax to similarly
define abstract state of an interface in such a way that the
implementation is free to use its own internal data structures
to represent that state. A hash map interface, for example, may
define put and get operations and an array of key/value pairs
as the state of the component; an implementing component
may then choose to represent this key/value pair list in a flat
array, using a multi-level index, or some other internal data
structure. Whenever we adapt away from a component, we
therefore expect that component to translate its internal data
structures into the abstract state defined in the interface, and
the reverse for a component being adapted into.

B. Distributed Model

Our distributed model extends the local one to transparently
support two new dimensions of adaptation in any system: the
relocation of a component to a remote host, offloading its
computation demands, and the replication of a component
across multiple remote hosts to scale out and load balance.
These two additions enable systems to be entirely written as a
local system, and during execution have their local components
moved to other host machines to form a distributed system. In
this section we only consider these actions for the simple case
of stateless components (i.e., those that declare no transfer
state), covering the stateful case in the following section.

Component relocation is the action of transferring a locally-
executing component to another available host machine. Repli-
cation, on the other hand, is the action of transferring multiple
copies of a locally-executing component to a set of distinct



machines. Both share two main stages that the system needs to
execute: 1) replace the target local component to a local proxy
component, and ii) load the target component (or multiple
replicas of it) in the remote machine(s).

The first stage is executed by replacing the component to
be relocated with a proxy. This process uses exactly the same
adaptation process supported by the local model, where two
local components are exchanged. The difference is that the
newly added component is a proxy component rather than
an implementation of the interface. Proxy components act
as regular components that implements the same interface as
the component they replaces, except that for each function
they transparently perform remote procedure calls (RPC) to
the actual component, now running remotely. In the case
of replication, the proxy component also implements a load
balancing strategy (e.g., round robin) which forwards each
incoming function call to a different replica.

The second stage is to load the moved (relocated or repli-
cated) component onto the new machine(s). This stage consists
of loading a remote-side proxy component (function (8) in
Fig. 2), loading the relocated component and satisfying all its
dependencies (i.e. to connect it to all components it requires
to properly function) on the remote machine. The remote-
side proxy is a generic component which acts as a server to
receive the local-side proxy calls and forwards them to the
right function on the remote component. For replication, this
remote loading process is simply followed for each replica.

Once these two adaptation stages are completed the system
is resumed and all calls for the relocated/replicated com-
ponents are performed as if they were local function calls.
Note that the transparent distribution mechanisms described
here require that any failures caused by remote interactions
must also be dealt transparently, since components are not
expected to be designed with errors cases in mind for remote
interactions. The implementation of failure handling is beyond
our scope here but a range of different approaches is possible.

C. State Management

In this section we discuss an extension to our distributed
model (Sec. III-B) to support relocation and replication of
stateful components (i.e., those that have transfer state
declared), plus sharding of state among remote component
replicas where possible.

A key challenge in supporting these actions is to appropri-
ately handle consistency and inter-dependencies in state across
replicas or shards. A major element of this challenge is to sup-
port reduced consistency wherever possible in order to enhance
scalability and flexibility of autonomous state management.
As an example of why this is useful we can consider a set of
replicated copies of a stateful component, for which we can
easily inject the same copy of state into each replica when it is
first started. For all following function calls, we can then adopt
a strong consistency model and simply replicate the function
call on each replica, ensuring their state transitions are always
synchronised. However, this approach clearly does not enhance
the throughput or performance of a system as each replica

is involved in servicing every request. The ability to adopt
a weaker consistency model where possible (i.e., where the
design of a component and its relationship with state allows)
is therefore crucial to gain more flexibility for different higher-
performance distributed state management solutions.

In this section we cover each style of distribution, and
present a set of keywords that programmers can use to
annotate parts of their interfaces to support greater flexibility
in autonomous state management. The set of annotations that
we use for this purpose are shown at the bottom of Fig. 2.

1) Relocation: As previously described, this is the action
of moving a local component to another machine in the infras-
tructure. The actions needed to relocate a stateless component
comprises of i) replacing the target component to a proxy,
and ii) loading the target component remotely with all its
dependencies. At the end of this process the target component
and all components that were connected to it are unloaded
from the local machine and are loaded and properly connected
in the remote machine. Depending on the component, a good
portion of the local component graph gets relocated to a
new machine. For stateful components, relocation also has
to consider transferring state from the old instance of the
local target component to its remote instances. Considering an
entire subgraph of components might get relocated, all stateful
components that are part of this subgraph also require their
state to be transferred to their new remote instances.

State transfer always occurs after the new remote instances
are loaded and before resuming the local component. Once
transferring is complete, the paused component is resumed and
the system continues to operate as it was when all components
were local. The relocation action only moves one instance of
the component and its subgraph to a different machine, and
therefore, just as in the local case, all stateful components
only exist in one place and no further attention are needed
to maintain consistency. All relocation stages, including state
transferring, is done by the runtime and it only requires com-
ponent developers to define transferable state with the transfer
keyword. During state transferring, the runtime extracts all
state, and after the new remote instances are created, it injects
them in the new instances.

2) Replication: This is the action of relocating multiple
instances of one local component across the infrastructure. In
other words, the set of actions used to perform relocation is
basis to perform replication. For the stateful component, the
result of this action can also mean the replication of state.
However, to allow for more flexible system’s compositions
(i.e. different ways in which to support horizontal scale),
our model, in this case, also support the extraction and
centralisation of component’s state so that the component
behaviour can be replicated numerous times without causing
any state inconsistency. The two cases are detail below.

We name ‘full replication’ the action of replicating both
component behaviour and its state multiple times across the
system’s infrastructure. In full replication, the stage of trans-
ferring state from the local component to its remote replicas
are conducted the same way as in the relocation operation, but



repeated multiple times for all existing component’s replicas.

The proxy that replaces the local component instance can be
implemented in two different ways, which give more flexibility
to the system’s composition. One option is to have a proxy that
forwards incoming function calls to all replicas, implementing
the concept of group communication, increasing reliability
and availability of systems. Another option is to implement a
load balancing strategy that forwards each individual incoming
function call to a replica.

In case of the latter proxy implementation, the system
has also to transparently provide a consistency model that
would propagate the changes that happen in the state of one
replica to all replicas. Note that depending on the consistency
level required, for each operation processed by a replica the
changes in the state has to be propagated to the other replicas,
somehow maintaining the order of changes, which may result
in large overhead. Less constraining consistency models (e.g.
eventual consistency), which guarantees that the system will be
consistent in a point in the future, but not after each operation,
can be applied, but only when components have high tolerance
to stale data. The definition of the allowed consistency model
is defined by the component’s developer when creating the
component itself, and adding annotations (c) or (d) (in Fig.2)
in the interface on top of the state definition.

Finally, extracting and isolating state allows for free repli-
cation of components without having to deal with consistency
models or group communication. This process is done by
relocating the component that encapsulates the state before
replicating the target component. At the end of the relocation
stage, the target component that is still running locally already
has the proxy component that remotely interacts with the
component holding its state. When the replication action
occurs, it proceeds just as if the component to be replicated
were stateless. All replicas end up with the same version of the
proxy that interacts with the state. The local proxy component
that forwards incoming function calls uses a round robin load
balancing strategy to forward calls to the replicas without
worrying about state consistency.

3) Sharding: This action is very common in databases and
consists of splitting a data set among distributed replicas. This
action allows stateful components to be replicated and each
of the replicas hold one part of the component state. This
is particularly useful when distinctive and independent part
of the state are intensively required. Then by splitting them
and relocating them, we can reduce competition to computing
resources, for instance, CPU in case access to this disjoint
part of state is split, or network when access to this part of
the state can be split and placed closer to the system element
which is constantly requesting it. Therefore, when forwarding
function calls to component replicas, the proxy has to know
which part of the state the called function will be using, in
order to properly invoke the function on the correct replica. It
is important to notice that sharding can only be performed in
component with a collection of items as state. For instance,
lists, queues, hashtables, and so on, but are not restricted to
these basic data types, any component holding a collection of

items as their state is a candidate for sharding. There are three
main stages that need to be executed to realise state sharding,
they are: data splitting, state transferring, and load balancing
strategy definition.

Data splitting is the process of separating the local aggre-
gated set of items to be transferred, each sub set of the collec-
tion, to a set of remote machines. The general mechanism to
perform this action is to use a consistency hashing approach.
This approach uses a key, for each item in the collection, and
the number of replicas to distributed the items over. Then we
iterate over the items applying a hashing function to the key
which will result in the number of the replica where the data
will be inserted. The entire state splitting process is performed
locally, once the items are split in different states, they are then
transferred to the remote machines. The main problem in this
stage is that the component’s developer has to provide a field
that will be used as the item’s key, using annotations (a) or
(b) shown in Fig. 2, on top of every function.

After the first stage is concluded, the split state is then
transferred to their corresponding replicas. The state transfer-
ring stage is performed as in other cases (e.g. replication and
relocation). Each shard of the state is transferred to a specific
replica following the consistency hashing approach.

The third and final stage aims to guarantee that the calls
are being properly routed to the right replica. This requires the
developer to provide the key of the data that will be accessed or
changed as a result of the function execution. Once developer
annotates all functions, the proxy can use the provided key
and the same consistency hashing scheme to determine which
replica should be invoked to execute the remote call.

As a final note, all previous state management actions here
described can be used recursively. That is, when a set of
component are replicated along with their state (in case of
‘full replication’ previously described) the same set of state
management actions can be further carried out by, for instance,
sharding the state of the newly created replicas and so forth.
This makes the model extremely flexible, supporting a large
set of possible system compositions that are useful when
supporting requirements for a variety of operating conditions.

This recursive use of state management actions is possible
because replication, relocation and sharding are realised by
a set of primitive actions and properties ensured by the
annotations and primitive functions (illustrated by Fig. 2),
which are always available to newly created replicas.

D. Performance Analysis: Horizontal Scaling

Our described approach supports a wide range of ways in
which to compose a system — allowing any local system, in-
cluding stateful components, to be converted into a distributed
one which can automatically benefit from horizontal scaling.
In this section we present the main enabled composition styles
and discuss the scenarios in which they may boost a system’s
performance by automatically supporting horizontal scaling.
Fig.3 illustrates the different compositions.

The top left of Fig.3 shows two components connected
locally. The lower component has the upper component as its



Local: Legend:
. state
@ . component
_ local interaction
Distributed: ---- remote interaction

II"‘
\ll

(b) (c) (d)

R

Fig. 3. Distinct compositions of stateful component relocation, replication
and sharding enabled by the model.

state, and the interaction between them is performed locally.
The bottom half of the image illustrates all possibilities of
relocation (b, c), replication (c, d, e, f) and sharding (d, e, f)
for this pair of components. We will use these compositions as
illustrating examples of how changing the interaction between
components and their state can impact system performance.

The system compositions illustrated in (b) and (c) consist
of extracting and isolating state. This is a widely used system
architecture that separates behaviour from state, and enables
behaviour to be freely replicated (as shown in (c)), decreasing
system’s response time when the amount of processing time
spent on each replica is high, due to parallelism in handling
incoming requests. Although this is an architecture that en-
ables replication of the behaviour part of the component, it
centralises access to state, making state access a bottleneck.
The impact of this bottleneck is noticeable on the system’s
performance when time-consuming update operations are con-
stantly made by all replicas.

A better composition is to use the same system arrangement
but to change the proxy: instead of forwarding function calls
to all replicas, it shards the state and redirects requests to
only the replicas that host that part of the data. Sharding state,
in general, can boost performance if different parts of that
state are intensively updated, and the update processing time
is high. Sharding state in this situation improves performance
by splitting the state management workload among replicas.

Another system composition supported by state sharding is
(e), which has the same effect as (d), but enables replication
of the component behaviour. This is useful in cases where
updating state is time-consuming on the component that holds
state and the processing time on each of the component
behaviour is also high.

These examples demonstrate some of the wealth of system
composition permutations which can automatically be gained
using our approach, taking any purely-local system and allow-
ing it to be distributed or horizontally scaled by managing its
stateful components using our reflective state meta-model.

IV. CONCLUSION

This paper presents a reflection over state management in
modern systems. We argued that popular modern technologies

that are used to develop systems that handle highly dynamic
operating environments lack a holistic support for state man-
agement. Instead, engineers are forced to consider state in a
case-by-case basis, making it difficult to support adaptation
when changes to operating environment requires different
ways in handling system’s state. We propose a reflective model
over system state that offers new degrees of flexibility in
distributed system design, and new dimensions of self-adaptive
systems research as result. We hope the community join us in
exploring a complete version of this model, and to tackle the
challenges imposed by implementing such model.

ACKNOWLEDGEMENTS

This work was supported by the UK Leverhulme Trust via
the Self-Aware Datacentre project, grant RPG-2017-166

REFERENCES

[1] C. Anderson. Docker [software engineering]. IEEE Software, 32, 2015.
[2] David Bernstein. Containers and cloud: From Ixc to docker to kuber-
netes. IEEE Cloud Computing, 1(3):81-84, 2014.
[3] Gordon Blair, Geoff Coulson, Jo Ueyama, Kevin Lee, and Ackbar
Joolia. Opencom v2: A component model for building systems software.
IASTED software engineering and applications, 2004.
Gordon S. Blair, Anders Andersen, Lynne Blair, Geoff Coulson, and
David Sanchez. Supporting dynamic qos management functions in a
reflective middleware platform. IEE Proceedings-Software, 147(1):13—
21, 2000.
Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and
Jean-Bernard Stefani. The fractal component model and its support in
java. Software: Practice and Experience, 36(11-12):1257-1284, 2006.
Licia Capra, Wolfgang Emmerich, and Cecilia Mascolo. Carisma:
Context-aware reflective middleware system for mobile applications.
IEEE Transactions on software engineering, 29(10):929-945, 2003.
Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel
Mazzara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Mi-
croservices: yesterday, today, and tomorrow. In Present and ulterior
software engineering, pages 195-216. Springer, 2017.
Richard S Hall, Karl Pauls, Sturat McCulloch, and David Savage. Osgi
in action. Creating Modular Applications in Java, 2011.
Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi,
Anthony D Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. Mesos:
A platform for fine-grained resource sharing in the data center. In NSDI,
volume 11, pages 22-22, 2011.
Fabio Kon, Fabio Costa, Gordon Blair, and Roy H. Campbell. The case
for reflective middleware. Commun. ACM, 45(6):33-38, June 2002.
Garrett McGrath and Paul R Brenner. Serverless computing: Design,
implementation, and performance. In 2017 IEEE 37th International
Conference on Distributed Computing Systems Workshops (ICDCSW),
pages 405-410. IEEE, 2017.
Peter Mell et al. The nist definition of cloud computing. 2011.
Barry Porter. Runtime modularity in complex structures: A component
model for fine grained runtime adaptation. In Proceedings of the 17th
international ACM Sigsoft symposium on Component-based software
engineering, pages 29-34, 2014.
Barry Porter, Matthew Grieves, Roberto Rodrigues Filho, and David
Leslie. Rex: A development platform and online learning approach for
runtime emergent software systems. In Symposium on Operating Systems
Design and Implementation, pages 333-348. USENIX, November 2016.
Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge
computing: Vision and challenges. [EEE internet of things journal,
3(5):637-646, 2016.
Jian Wang, Keqing He, Bing Li, Wei Liu, and Rong Peng. Meta-
models of domain modeling framework for networked software. In Sixth
International Conference on Grid and Cooperative Computing (GCC
2007), pages 878-886. IEEE, 2007.

[4

=

[5

[t}

[6

—

[7

—

[8

=

[9

—

[10]

[11]

[12]
[13]

[14]

[15]

[16]



