
Environmental IoT: Programming Cyber-physical
Clouds with High-level System Specifications

Roberto Rodrigues Filho, Barry Porter and Gordon Blair
School of Computing & Communications

Lancaster University, Lancaster, UK
{r.rodriguesfilho, b.f.porter, g.blair}@lancaster.ac.uk

Abstract—The Environmental IoT is a project where we inves-
tigate the potential of an integrated distributed system consisting
of an Internet of Things (IoT) and a Cloud Computing infras-
tructure. The resulting complex distributed system will be used
to support deep understanding of the natural environment inter-
dependencies and the management of the natural environment
through appropriate interventions. In this paper, we discuss our
approach to program this resulting complex distributed system
with high-level system specifications in the environmental science
context. The high-level specification encapsulates environmental
science concepts and conveys the system’s overall goals. The
approach consists of three refinement steps that translate the
high-level specification into the accordingly behaviour on the
resulting distributed system. This process captures the abstract
requirements of scientists and supports runtime adaptation.

I. INTRODUCTION

Modern distributed systems are increasingly heterogeneous
in their composition. Our Environmental IoT project is one
example of this. It combines cutting edge Internet of Things
(IoT) and Cloud Computing technology to provide real-time
data streams to support climate science. The provision of
real-time data is intended to provide a deep understanding of
the environmental inter-dependencies and thus enable holistic
management strategies.

Combining the IoT and Cloud Computing represents a
highly complex distributed system. Programming the IoT, for
example, requires very specific knowledge of energy manage-
ment, routing protocols, signal processing, and data fusion
and aggregation techniques. Programming for the cloud, mean-
while, requires an understanding of multi-tier architectures and
virtual machine design and management.

Putting them both together results in a very complex infras-
tructure that is hard to program as a single integrated system.
Additionally, considering the Environmental IoT in particular,
we need a way for environmental scientists to describe the
overall aims of the system in terms of both functional and
non-functional (e.g. data quality) requirements. Finally, the
highly volatile nature of IoT deployments and the variable
multi-tenant nature of cloud systems, results in a pervasive
need for runtime adaptation in the resulting infrastructure.

The aim of this paper is to describe a way to program
the resulting complex distributed system composed by an
IoT and Cloud Computing infrastructure, in a way that can
capture the abstract requirements of scientists, and exhibits
inherent support for pervasive adaptation. We also argue that

the IoT and the cloud should be treated as equal partners in
a distributed system, both able to support computation in a
symbiotic manner.

The remainder of this paper is organised as follows: Section
II presents the state of art of using IoT and Cloud Comput-
ing technologies from the interoperability, programmability
and high-level system specification perspectives. Section III
shows the potential of combining IoT technologies and Cloud
Computing infrastructure, Section IV brings a discussion on
Environmental IoT describing its goals and motivation, and
Section V describes our approach. Finally, Section VI presents
the main challenges and open issues, and Section VII reports
the final considerations of this work.

II. RELATED WORK

The combination of IoT and Cloud Computing technologies
is a “hot topic” in the distributed systems research community,
as shown in [1]. These initial works, despite their clear
importance and contribution in highlighting the potential of
combining both infrastructures, only discuss low-level pro-
gramming aspects and the use of IoT to only push data towards
a Cloud Computing platform.

These works such as [2], [3] and [4], discuss the inter-
operability of both infrastructures by connecting the sensor
network using network overlay protocols to provide interoper-
ability between the two platforms. They also mention the use
of application-level protocols like HTTP or a publish/subscribe
approach to push data collected from the IoT infrastructure to
the cloud.

Third-party Platforms as a Service (PaaS) such as ThingS-
peak.com, Nimbits.org, Xively.com and ioBridge.com are also
used in that sense, i.e. to receive IoT data, store that data, and
make it available for applications interested in consuming it.

This initial view of having IoT only collecting and sending
data to a Cloud Computing infrastructure seems very limited.
Especially from a programmability perspective, since each
platform would have to be programmed individually consid-
ering fine-grained details specific of each, which increases the
challenges of programming the combined distributed system
as a whole.

The provision of a high-level system specification has been
the focus of several work. Works such as [5] [6] [7] use
model-driven engineering and domain-specific languages to
abstract the complexity of underlying systems to make the



programmability of such systems easier. We pinpoint that [5]
does not provide the level of abstraction required since their
representation is semantically closer to the technical solution
than to the application domain, while code generation in [6]
and [7] makes it difficult to provide runtime adaptivity.

III. INTERNET OF THINGS AND CLOUD COMPUTING

In this section, we identify the general advantages of unify-
ing IoT and Cloud Computing, discussing the relative benefits
and the complementarity of the two technologies.

First the IoT offers localized computation that is close
to the point of data collection, enabling fast identification
of interesting events and low-latency decisions on actuation
activities. On the other hand IoT technology is often unreliable
and has significant resource constraints, including energy,
memory capacity, processing power, network bandwidth, etc.

Secondly the Cloud Computing paradigm offers the illusion
of infinite resources with high reliability. This supports, for
example, massive scale and long term storage of data, complex
and computationally intensive models of climate predictions.
However, Cloud Computing is distant from the data collection
area, resulting in much more higher latency on actuation
decisions.

Symbiotically unifying IoT and Cloud Computing results
in a combined distributed system capable of handling large
amounts of real-time data collected from physical environ-
ments and making that data available to interested applica-
tions, enabling novel application domains like environmental
science.

In the next section we briefly describe the Environmental
IoT project, which serves as a case study for our work.

IV. ENVIRONMENTAL IOT

The Environmental IoT project represents a first attempt to
instrument and manage a catchment in all its facets, across
different geographical locations and at all its scales, for the
benefit of the key stakeholders associated with that catchment
- farmers and associated agricultural businesses, the water
industry, tourists and tourism related business, and society
more generally. This has the potential to completely transform
these associated businesses, enabling critical areas such as
integrated land and water management, coastal zone protection
and precision agriculture.

We focus on one specific geographic region around Conwy,
typical of many rural areas supporting important industries
including agriculture, forestry, tourism and fishing but facing
huge challenges brought about by climate change and conflict-
ing demands on land/water resources.

One of the main challenges in the Conwy and many
other catchments / landscapes is the potential conflict arising
from the needs of different industries, e.g. agriculture, water,
tourism and urban development and the need for decision sup-
port tools to future-proof against climate change. In the past,
‘silo management’ has often resulted in a development by one
industry negatively impacting on another (e.g. intensification
of agriculture reducing water quality).

Fig. 1. An Overview of our Approach.

The Environmental IoT project provides a major opportu-
nity to bring together data and assets from across different
domains (soil, water, plant ecology, animals) and organisations
(e.g. public, regulatory, industry) to enable integrated problem
solving across all of the industries in the area.

The overall aim of this project is to develop an
Environmental Internet of Things, supported by an associated
cloud infrastructure with the view of enabling a paradigm
shift in Environmental Science and associated environmental
management. The practical motivation for the research is to
develop a set of principles, techniques and tools that directly
support our goal of a paradigm shift in this area.

V. OUR APPROACH

Our approach aims to enable the description of the com-
bined distributed system’s goals through the use of a domain-
specific notation capable of expressing environmental science
concepts. The process of breaking these concepts down into
functional components that can be deployed in the resulting
distributed system is a complex process, for which we propose
three distinct stages of increasingly refined representation, as
illustrated in Fig. 1. In this section we describe each stage,
with regards to its inputs, outputs and its operations.

A. The Abstract Representation

The Abstract Representation is the first stage. It depicts
the process of merging and translating Domain-specific Sys-
tem Descriptions (DSD) into a Common System Description



(CSD). This consists of breaking down very domain-specific
concepts into a common high-level collection of system goals
about which further stages of our toolchain can reason.

The DSD is the input of this stage. We envision that the
DSD can be represented by any domain-specific notation. In
fact, the notation used to provide the description should match
the background and interests of the particular stakeholder. For
example, a stakeholder with a background in mathematics,
who is interested in providing a mathematical model to es-
tablish relations among environmental data, might want to
represent the system’s goals in terms of mathematical equa-
tions. Meanwhile, a stakeholder with a soil science background
might want to represent the system’s goals in terms of soil
science concepts using water permeation graphs.

The pool of available DSD will be extensible to support
the creation of new notations to suit a wide range of domain
specialisms (e.g. soil science, botany, hydrology, animal be-
haviour). In detail, when a new DSD is created by a domain
specialist, that specialist will also define a mapping between
the DSD and the CSD. Other domain specialists can then use
this DSD without being concerned about the mapping details.

The CSD is the output of the first stage. It is a high-level
representation of the combined goals that the stakeholders
want the system to perform.

The CSD is used to drive the remaining stages of refinement
(i.e. Network-centric and Node-centric representations) and is
a format with a sufficiently rich vocabulary to capture both
the abstract computational workflow of the system and the
relevant scientific parameters from a particular DSD (e.g. data
collection mechanics, aggregation and correlation functions).
The precise form of the CSD is an open research question that
we are currently investigating.

B. Network-centric Representation

The second refinement stage is the Network-centric Repre-
sentation. As input this stage receives the CSD, represented
as a workflow, as illustrated in Fig. 1. As output, a Network
Graph is produced which represents the resources of the
resulting distributed system and the connections among them.
This output is generated with the help of a resource database
which maintains an up-to-date list of resources such as specific
IoT nodes or cloud data-centre hosts.

We envision this refinement stage being performed in two
main steps. Firstly, for each element of the CSD workflow our
request is made to the resource database to verify if there is
a suitable resource to match that element and allocate it if so.
The resource database will attempt to return a nearest match
to each request: either an exact match will be returned, for
example temperature sensors in the exact area that is requested;
or a best-effort match, for example temperature sensors are
not available in that area but the temperature can be inferred
through other kinds of sensors in or near the area. In the
latter case, the stakeholders will be notified of the imperfect
match. Finally, if no resources can match the element then the
stakeholders are notified with an error. At the end of this step

we will have a set of resources reserved for use, including
sources of data on the IoT and storage facilities on the cloud.

Secondly, the Network Graph Generator will consider the al-
located resources R from the above step and will then allocate
further (generic) resources which will serve as connections
between the elements of R. These connections reflect the
connections on the CSD workflow. The fine details of this
step are themselves a complex research challenge which is a
subject of our future work.

C. Node-centric Representation
The third and last refinement stage is Node-centric Rep-

resentation. This representation consists of the fine-grained
component-based architecture that can be deployed in each
individual IoT and Cloud Computing resource present in the
Network Graph. In detail, the component configuration of each
resource comprises one generated ‘main’ component and a
collection of pre-built library components.

Each main component describes a specialized, application-
specific, behaviour of resources, ultimately derived from the
high-level specification of the system. An example of a main
component will be “collect temperature of a given region at
a given frequency” for the IoT, “create a database to store
temperature data” for the Cloud. These main components
have a set of required interfaces which link them to other
components that implement fine-grained behaviour, for exam-
ple routing protocols, sensor drivers, aggregation functions or
databases. Those components may, in turn, have their own
required interfaces, and so on.

The separation of specialized (generated) behaviour from
generic (library) behaviour gives us the flexibility to reuse
specialized behaviours in different contexts by connecting
them to alternative library components.

The component-based models that we intend to use here
are Dana [8] for the Cloud Computing and LorienOS [9]
for resource-constrained IoT devices. Both of these models
provide advanced runtime introspection and adaptation capa-
bilities. The main motivation behind the use of component
models in this context is that it enables the encapsulation of
well defined units of functionality to which we can attach
appropriate semantic annotations. This annotated units are
used for automating the generation of software composition
to meet high-level goals.

D. Deployment and Adaptation
The component-based architecture resulting from the last

refinement stage will be deployed in the IoT and Cloud
Computing resources. The deployment process is achieved by
sending the components one-by-one to the selected resource
which will have a component-based model responsible for
receiving each component and connecting it to its dependen-
cies. The first deployed version will be functional, because the
Network Graph Generator will always generate the best-guess
configuration based on the resources available.

However, due to the fact that the resources are volatile (e.g.
sensor node R runs out of battery) a generated functional con-
figuration may be sub-optimal or may become non-functional.



In order to ensure that the system will perform in its “best”
configuration, runtime adaptation is required.

We envision the system adaptation to be driven from the bot-
tom up, i.e. from the resources to the high-level specification.
That is because the resources can reason in real-time about
its own infrastructure. Through successive iterations, optimal-
local configurations may be achieved based on local adaptation
decisions. This decentralized approach makes adaptation fast
and scalable in contrast to having a centralized entity dictating
how and where adaptation is performed.

VI. CHALLENGES

In order to create a working solution for the approach
described, some challenges and open issues were identified.
Below is a short list of those we judge to be the most important
ones:

• The CSD representation (see Sec. V-A) itself is a chal-
lenge. This challenge consists of defining the workflow
elements that will constitute the CSD representation in
order to make it: i) powerful enough to reflect the
concepts described by a wide range of DSD; and ii) well
structured to enable automatic checking by the Network
Graph Generator to verify if the available resources can
realize the system’s goals.

In the Network-centric Representation (see Sec. V-B), fine
details involving the Resource Database, Network Graph Gen-
erator and the Network Graph representation presents some
challenges.

• The Resource Database is envisioned as an entity capable
of reasoning over a list of resources in order to decide
whether the system goals can be achieved or not. The
challenge consists of finding the right techniques and
algorithms that can be used to infer a match to the CSD
workflow elements, in a reasonable time frame.

• The Network Graph Generator (see Fig. 1) consists
of allocating generic resources (any resource available
on the resulting distributed system) to connect selected
resources (the ones necessary to realizing a system’s goal)
that are located separately and can not connect directly to
each other. The challenges are: i) how to select the generic
resources, considering the criteria and techniques to select
the best set of generic resources to provide connection,
and ii) how to decide the best network configuration
based on a list of selected resources.

Those challenges and open issues are going to be investi-
gated in the context of the Environmental IoT project in the
near future. We encourage and invite the community to join
us in investigating the listed, and related, challenges.

VII. FINAL CONSIDERATIONS

The IoT and Cloud Computing have individually great
potential in a variety of application domains such as smart
cities, health-care and so on. Together these technologies
complement each other, increasing their potential and pre-
senting novel opportunities to investigate emerging application
domains like environmental science.

We have described an approach using three refinement
stages approach to translate a high-level representation into
a component-based architecture that can be deployed to a
combined distributed system formed by an IoT and Cloud
Computing. This approach captures scientific abstract require-
ments and translates them into a component-based architecture
capable of providing control over the resulting distributed sys-
tem. This process decreases the complexity of programming
the resulting system and supports pervasive adaptation.

However, there are some challenges and open issues that
need to be addressed in order to create a working solution for
the presented approach. We consider: the abstract represen-
tation itself (the CSD representation Sec. V-A), the process
of verifying if the resulting distributed platform is capable
of realizing the system’s goals (the Resource Database Fig. 1)
and the generation of a network graph representation (see Sec.
V-B) the most important ones.

ACKNOWLEDGEMENTS

Roberto Rodrigues Filho would like to thank his sponsor,
Coordination for the Improvement of Higher Education Per-
sonnel (CAPES), Brazil, for the scholarship grant Proc. BEX
13292/13-7.

This work has also been supported by the Engineering and
Physical Sciences Research Council (EPSRC) under contract
number EP/L023636/1.

REFERENCES

[1] Cuzzocrea, A., Fortino, G., & Rana, O. (2013, May). Managing Data
and Processes in Cloud-Enabled Large-Scale Sensor Networks: State-
Of-The-Art and Future Research Directions. In Cluster, Cloud and Grid
Computing (CCGrid), 2013 13th IEEE/ACM International Symposium on
(pp. 583-588). IEEE.

[2] Kurschl, W., & Beer, W. (2009, December). Combining cloud computing
and wireless sensor networks. In Proceedings of the 11th International
Conference on Information Integration and Web-based Applications &
Services (pp. 512-518). ACM.

[3] Alamri, A., Ansari, W. S., Hassan, M. M., Hossain, M. S., Alelaiwi,
A., & Hossain, M. A. (2013). A survey on sensor-cloud: architecture,
applications, and approaches. International Journal of Distributed Sensor
Networks, 2013.

[4] Schaffers, H., Komninos, N., Pallot, M., Trousse, B., Nilsson, M.,
& Oliveira, A. (2011). Smart cities and the future internet: Towards
cooperation frameworks for open innovation (pp. 431-446). Springer
Berlin Heidelberg.

[5] Fouquet, F., Morin, B., Fleurey, F., Barais, O., Plouzeau, N., & Jezequel, J.
M. (2012, June). A dynamic component model for cyber physical systems.
In Proceedings of the 15th ACM SIGSOFT symposium on Component
Based Software Engineering (pp. 135-144). ACM.

[6] Patel, P., Morin, B., & Chaudhary, S. (2014, May). A model-driven de-
velopment framework for developing sense-compute-control applications.
In Proceedings of the 1st International Workshop on Modern Software
Engineering Methods for Industrial Automation (pp. 52-61). ACM.

[7] González Garcı́a, C., Pelayo, G., Bustelo, B. C., Pascual Espada, J., &
Cueva-Fernandez, G. (2014). Midgar: Generation of heterogeneous ob-
jects interconnecting applications. A Domain Specific Language proposal
for Internet of Things scenarios. Computer Networks, 64, 143-158.

[8] Porter, B. (2014, June). Runtime Modularity in Complex Structures: A
Component Model for Fine Grained Runtime Adaptation. Component-
Based Software Engineering.

[9] Porter, B., & Coulson, G. (2009, December). Lorien: a pure dynamic
component-based operating system for wireless sensor networks. In
Proceedings of the 4th International Workshop on Middleware Tools,
Services and Run-Time Support for Sensor Networks (pp. 7-12). ACM.


